Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 21;72(Pt 7):988–994. doi: 10.1107/S205698901600935X

Crystal structures of bis­(phen­oxy)silicon phthalocyanines: increasing π–π inter­actions, solubility and disorder and no halogen bonding observed

Benoît H Lessard a,b, Alan J Lough c, Timothy P Bender a,d,c,*
PMCID: PMC4992922  PMID: 27555947

We report the syntheses and characterization of three solution-processable phen­oxy silicon phthalocyanines (SiPcs). The π–π inter­actions between the aromatic SiPc cores were studied. In all three cases, the solubility of the mol­ecules was increased by the addition of phen­oxy groups while maintaining π–π inter­actions between the aromatic SiPc groups.

Keywords: crystal structure, silicon, phthalocyanine, phenol, phen­oxy, phen­oxy­lation, inter­actions, halogen, bonds

Abstract

We report the syntheses and characterization of three solution-processable phen­oxy silicon phthalocyanines (SiPcs), namely bis­(3-methyl­phen­oxy)(phthalocyanine)silicon [(3MP)2-SiPc], C46H30N8O2Si, bis­(2-sec-butyl­phen­oxy)(phthalocyanine)silicon [(2secBP)2-SiPc], C44H24I2N8O2Si, and bis­(3-iodo­phen­oxy)(phthalocyanine)silicon [(3IP)2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π–π inter­actions between the aromatic SiPc cores were studied. It was determined that (3MP)2-SiPc has similar inter­actions to previously reported bis­(3,4,5-tri­fluoro­phen­oxy)silicon phthalocyanines [(345 F)2-SiPc] with significant π–π inter­actions between the SiPc groups. (3IP)2-SiPc and (2secBP)2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these mol­ecules was increased by the addition of phen­oxy groups while maintaining π–π inter­actions between the aromatic SiPc groups. The solubility of (2secBP)2-SiPc was significantly higher than other bis-phen­oxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure.

Chemical Context  

Organic photovoltaic (OPV) devices represent an emerging technology with immense potential for inexpensive solar energy generation. The majority of these prototypes depend on fullerenes as acceptor mol­ecules that are problematic due to their high manufacturing cost, low photovoltage generation and poor photochemical stability (Li et al., 2014; Eftaiha et al., 2014). Recently, examples have emerged where fullerene-free materials are being implemented into OPV devices reaching overall efficiencies of 5–7% (Li et al., 2014; Eftaiha et al., 2014; Cnops et al., 2014; Zhang et al., 2013). Among these emerging materials are the family of silicon phthalocyanines (SiPcs).

Metalphthalocyanines (MPcs) are composed of a nitro­gen-linked tetra­meric di­imino­isoindoline conjugated macrocycle that chelate a metal or metalloid through two covalent bonds and two coordination bonds (see Scheme 1). The resulting mol­ecules are highly stable materials that have been used for a variety of applications including dyes and pigments for decades. Silicon phthalocyanines (SiPcs) are characterized by having an additional two axial bonds that are perpendicular to the SiPc macrocycle. These axial groups can serve as chemical handles for the functionalization of the base SiPc mol­ecule. Such functionalizational groups can impart solubility as well as change the solid-state arrangement.graphic file with name e-72-00988-scheme1.jpg

Honda et al. and our group have studied highly soluble tri-n-hexyl-silyl-SiPc [(3HS)2-SiPc] as ternary additives in bulk heterojunction (BHJ) OPV devices (Lessard et al., 2014; Honda et al., 2011, 2009). Our hypothesis was that the high solubility was also combined with a high tendency to crystallize into the solid state with high levels of order. As part of that study, (3HS)2-SiPc and an analog bis­(3-penta­decyl­phen­oxy)- SiPc [(PDP)2-SiPc] were found to have very few π–π inter­actions between the aromatic SiPc core due to the large alkyl substituents (Lessard et al., 2014). Our group recently reported that simple phen­oxy­lation chemistry can be employed to enhance the π–π inter­actions present with the solid-state arrangement of the SiPc mol­ecules, resulting in improved efficiency of planar heterojunction (PHJ) OPV devices (Lessard, White et al., 2015; Lessard, Grant et al., 2015). Our work on boron subphthalocyanines (BsubPcs) has also illustrated that a meta-methyl phen­oxy group is a carbon-efficient method for significantly increasing the solubility of BsubPcs (Paton et al., 2012), a characteristic that is necessary for solution-processed OPVs and other characterization techniques. In addition, 3-iodo-phen­oxy-BsubPc was found to exhibit halogen bonding between the iodo group and the BsubPc macrocycle and therefore resulting in a well-defined solid-state arrangement. The sum of these observations therefore lead our group to focus on the synthesis of soluble solution-processable phen­oxy SiPcs that may have varying degrees of carbon-efficient solubilities and tendencies to crystallize with high order into the solid state. We therefore have synthesized three new derivatives: bis­(3-methyl­phen­oxy)silicon phthalocyanine [(3MP)2-SiPc], bis­(2-sec-butyl­phen­oxy)silicon phthalo­cyanine [(2secBP)2-SiPc] and bis­(3-iodo­phen­oxy)silicon phthalocyanine [(3IP)2-SiPc] (Fig. 1). We wished to investigate whether a 1- and 4-carbon solubilizing group would both enable solubility and facilitate more π–π inter­actions between the aromatic SiPc units compared to (3HS)2-SiPc and also to probe whether halogen bonding would be present in crystals grown of (3IP)2-SiPc (Virdo et al., 2013).

Figure 1.

Figure 1

(a) Chemical schemes and (b) mol­ecular structures showing 50% probability displacement ellipsoids of (3MP)2-SiPc (left), (3IP)2-SiPc (middle) and (2secBP)2-SiPc (right). H atoms omitted for clarity.

Single crystals of (3MP)2-SiPc, (3IP)2-SiPc and (2secBP)2-SiPc were grown by slow diffusion of heptane into THF and were characterized by single crystal X-ray diffraction. (3MP)2-SiPc was also grown by slow diffusion of pentane into benzene and evaporation form chloro­form, resulting in identical crystals as identified by X-ray crystallography. Fig. 2 is a picture of actual crystals of (3MP)2-SiPc, roughly 1.5 mm in size, grown by slow evaporation.

Figure 2.

Figure 2

An optical microscope image of (3MP)2-SiPc grown by slow diffusion of heptane into THF.

Structural commentary  

Of note at the structural level, when considering the three reported structures, is the relatively higher disorder observed for (2secBP)2-SiPc in the solid state (as indicted by the size of the ellipsoids, Fig. 1) compared to that of (3MP)2-SiPc, (3IP)2-SiPc and other known bis-phen­oxy-SiPc structures (Lessard, Grant et al., 2015). This is consistent with the very high solubility observed for (2secBP)2-SiPc and in contrast to the low disorder observed for the also highly soluble (3HS)2-SiPc) (Lessard et al., 2014).

Supermolecular Features  

The crystal structures were studied using Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009). All three crystals were mapped using (a) dnorm and (b) shape index in Fig. 3 for (3MP)2-SiPc, Fig. 4 for (3IP)2-SiPc and Fig. 5 for (2secBP)2-SiPc. In all three figures, the regions shaded in red correspond to the contacts at distances shorter than the sum of the van der Waals radii while the white to blue are for the distances longer than the sum of the van der Waals radii. In each crystal, the close contacts (and their symmetry equivalents) are readily identified on these maps and in all three cases they are different. For example for (3MP)2-SiPc (Fig. 3) one of the hydrogen atoms (H39C) of the 3-methyl group on the phen­oxy group experiences a contact of a distance of 2.341 Å (C39—H39C H3A—C3; Table 1). It is inter­esting to note that for (3IP)2-SiPc, the iodo group does not have any significant inter­actions with adjacent mol­ecules (Fig. 2 a). These observations are not consistent with our previous observations for various halo-phen­oxy-BsubPcs such as 3-iodo-phen­oxy BsubPc (Virdo et al., 2013). The shape index (Fig. 3 b, 4b, 5b) is based on the two local principal curvatures of the HS, with concave regions shaded in red and convex regions shaded in blue (Spackman & Jayatilaka, 2009). Again, these plots illustrate the difference in the solid-state arrangement between all three mol­ecules (Fig. 3 b, 4b, 5b). Unfortunately, similarly to previously reported carbazole derivatives (Rozycka-Sokolowska et al., 2015), these plots do not generate further insight into the π–π inter­actions between mol­ecules due to their relatively large distances of 3.5–4.0 Å.

Figure 3.

Figure 3

Hirshfeld surface analysis of (3MP)2-SiPc mapped with (a) dnorm and (b) shape index. Red spots on the dnorm surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant π–π inter­actions between (3MP)2-SiPc are outlined by the dashed black circle.

Figure 4.

Figure 4

Hirshfeld surface analysis of (2secBP)2-SiPc mapped with (a) dnorm and (b) shape index. Red spots on the dnorm surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant π–π inter­actions between (2secBP)2-SiPc are outlined by the dashed black circle.

Figure 5.

Figure 5

Hirshfeld surface analysis of (3IP)2-SiPc mapped with (a) dnorm and (b) shape index. Red spots on the dnorm surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant π–π inter­actions between (3IP)2-SiPc are outlined by the dashed black circle.

Table 1. Comparison of contacts (Å) less than the sum of the van der Waals radii for various meta-functional bis­(meta-functional phen­oxy) silicon phthalocyanines.

Mol­ecule C(K)-H(L)—H(M)—C(N) distance XX
(3MP)2-SiPc C4—H4A⋯O2—Si1 2.67 H⋯O
(3MP)2-SiPc C46—H46B⋯H11—C11 2.39 H⋯H
(3MP)2-SiPc C39—H39C⋯H3A—C3 2.34 H⋯H
(3MP)2-SiPc C42—C43⋯H21A—C21 2.75 C⋯H
(3IP)2-SiPc C4—H1⋯H11—C21 2.32 H⋯H
(2secBP)2-SiPc C24—H16⋯H19—C26 2.30 H⋯H

Being inter­ested in the stacking between aromatic macrocycles, we previously established (Lessard, Grant et al., 2015) criteria to compare the π–π inter­actions between neighboring Pc mol­ecules for single crystals of SiPcs. Following these established criteria, the π–π inter­actions of (3MP)2-SiPc were identified and compared to previously published phen­oxy SiPcs (Table 2). Fig. 6 a illustrates the packing of (3MP)2-SiPc crystals which is very similar to the packing of previously reported bis­(3,4,5-tri­fluoro­phen­oxy) SiPc [(345F)2-SiPc; Lessard, Grant et al., 2015]. For example, both mol­ecules experience a complete isoindoline stacking where the shortest mol­ecular distances between isoindoline groups of (3MP)2-SiPc and (345FP)2-SiPc were determined to be 3.655 and 3.580 Å, respectively. In addition, the (3MP)2-SiPc exhibits a slip angle of 22.33/22.53° with a slight offset of 0.21° between the aromatic planes while (345F)2-SiPc has a less significant slip angle of 18.90° and exactly parallel (0° between planes) inter­acting isoindoline groups (Fig. 6 b).

Table 2. Summary of single-crystal X-ray diffraction data (Å, °).

Slip angle between Pc aromatic = angle between centroid-to-centroid and normal of each aromatic Pc benzene; angle between aromatic planes = smallest angle between both planes that contain the stacking aromatic benzene rings.

Compound details of packing shortest distance between Pc aromatic slip angle between Pc aromatic angle between aromatic planes Reference
Cl2—SiPc dual benzene ring stacking 4.172, 4.172 34.87 / 36.59 1.72 Lessard, White et al. (2015)
(3MP)2-SiPc isoindoline stacking 3.794, 3.655, 3.794 22.33 / 22.53 0.21 This work
(345F)2-SiPc isoindoline stacking 3.716, 3.580, 3.716 18.90 / 18.90 0 Lessard, Grant et al., (2015)
(246F)2-SiPc dual benzene ring stacking 3.860, 3.860 30.08 / 30.08 0 Lessard, Grant et al. (2015)
(3IP)2-SiPc dual benzene ring stacking 3.716, 3.716 17.55/14.60 10.9 This work
(2secBP)2—SiPc dual benzene ring stacking 3.947, 3.947 32.53/26.02 6.5 This work

Notes: in all cases the single crystals were grown by slow diffusion of heptane into a THF solution of the respective compound. Identical crystals of (3MP)2-SiPc were also grown by diffusion of pentane into a solution of benzene as well as from slow evaporation of a chloro­form solution.

Figure 6.

Figure 6

Part of the crystal structure of (a) (3MP)2-SiPc, (b) (3IP)2-SiPc and (c) (2secBP)2-SiPc. The dotted green lines represent significant π–π inter­actions with a centroid–centroid distance < 4.0 Å. Details on the π-π inter­actions are tabulated in Table 3.

These results indicate that (3MP)2-SiPc has similar inter­actions to (345F)2-SiPc, which represents significant increases in π–π inter­action between SiPc groups compared to the starting Cl2-SiPc mol­ecule. (3IP)2-SiPc and (2secBP)2-SiPc on the other hand exhibit a parallel stacking of two of the peripheral aromatic groups. Of the SiPcs similar to (35F)2-SiPc and (246F)2-SiPc (Lessard, White et al., 2015; Lessard, Grant et al., 2015), for example, (3IP)2-SiPc experienced a similar stacking to (246F)2-SiPc (Lessard, Grant et al., 2015), both having a parallel stacking of two of the peripheral aromatic units of the SiPc chromophore, with very similar inter-ring distances of 3.716 and 3.860 Å, respectively, suggesting similar strength in π–π inter­actions between neighboring mol­ecules for both (3IP)2-SiPc and (246F)2-SiPc (Fig. 6, Table 2). (3IP)2-SiPc has a slip angle of 17.55/14.60° with 10.99° between the aromatic planes while (246F)2-SiPc has a more significant slip angle of 30.08° and completely parallel (0° between planes) and inter­acting aromatic groups (Fig. 6, Table 2). (2secBP)2-SiPc has a unique two-dimensional stacking where two peripheral aromatic groups will stack with an adjacent SiPc mol­ecule and one of the same peripheral aromatic groups along with a third one will stack in a similar fashion but at 90° from the first inter­action (Fig. 6 c, Table 2). In both cases a relatively large inter-ring distance of 3.947 Å was observed, suggesting a weak π-π inter­actions between neighboring (2secBP)2-SiPcs (Fig. 6, Table 2). This weak inter­action is not a surprise due to the additional solubilizing groups (sec-but­yl) which space out the mol­ecules and increase the size of the unit cell.

Synthesis and crystallization  

Materials

m-Cresol (>98%) 2-sec-butyl­phenol (98%) and 3-iodo­phenol (98%) were obtained from Sigma–Aldrich and chloro­benzene (99.5%) and chloro­form (CHCl3, 99.8%) were obtained from Caledon Laboratories Ltd. All chemicals were used as received unless otherwise specified. Di­chloro silicon phthalocyanine (Cl2-SiPc) was synthesized according to the literature (Lowery et al. 1965).

Synthesis of silicon phthalocyanine derivatives

The synthesis of (3MP)2-SiPc, (3IP)2-SiPcs and (2secBP)2-SiPcs were performed following the general procedure used to synthesize F10-SiPc·(Lessard, White, et al. 2015). For example, the synthesis of (3MP)2-SiPc was performed in a round-bottom flask equipped with a condenser and nitro­gen purge, which was filled with a 10:1 molar excess of m-cresol (2.3g, 21 mol) to Cl2-SiPc (1.3g, 2.1 mol) in chloro­benzene (100 ml). The mixture was stirred and heated to 388 K overnight and cooled to room temperature. The product was then obtained by precipitation into iso­propanol and filtered. The product was then dried in a vacuum oven overnight. Yield: 1.3g (80.2 mol%). DART Mass spectroscopy: calculated mass: 755.234, obtained mass: 755.236. (3IP)2-SiPcs and (2secBP)2-SiPcs were synthesized under similar conditions and crystals were again obtained by slow diffusion of heptane into a THF solution.

Refinement  

Crystal data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions C—H = 0.94–0.98 Å and included in a riding-motion approximation with U iso(H) = 1.2U eq(C) or 1.5U eq(Cmeth­yl).

Table 3. Experimental details.

  3MP2-SiPc 3IP2-SiPc 2secBP2-SiPc
Crystal data
Chemical formula C46H30N8O2Si C44H24I2N8O2Si C52H42N8O2Si
M r 754.87 978.60 839.03
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Orthorhombic, I b c a
Temperature (K) 147 147 220
a, b, c (Å) 10.2566 (4), 16.5665 (8), 11.5120 (5) 12.6431 (6), 19.587 (1), 7.5403 (4) 10.9239 (3), 25.7282 (7), 33.2065 (8)
α, β, γ (°) 90, 115.860 (3), 90 90, 103.222 (1), 90 90, 90, 90
V3) 1760.20 (13) 1817.78 (16) 9332.8 (4)
Z 2 2 8
Radiation type Cu Kα Mo Kα Cu Kα
μ (mm−1) 1.04 1.82 0.83
Crystal size (mm) 0.27 × 0.08 × 0.03 0.40 × 0.22 × 0.04 0.12 × 0.12 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD Bruker Kappa APEX DUO CCD Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011) Multi-scan (SADABS; Bruker, 2011) Multi-scan (TWINABS; Bruker, 2007)
T min, T max 0.606, 0.753 0.635, 0.746 0.621, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 11133, 5548, 4909 31089, 4119, 3721 120855, 4085, 2969
R int 0.042 0.024 0.104
(sin θ/λ)max−1) 0.595 0.650 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.111, 1.03 0.037, 0.101, 1.07 0.066, 0.208, 1.08
No. of reflections 5548 4119 4085
No. of parameters 516 259 287
No. of restraints 1 0 4
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.44 2.25, −1.33 0.40, −0.36
Absolute structure Flack (1983), 2431 Friedel pairs
Absolute structure parameter 0.51 (4)

Computer programs: APEX2 and SAINT (Bruker, 2011), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006).

In (3MP)2-Si there appears to be pseudosymmetry with an approximate centre of symmetry. The c-glide reflections are weak but present and the P21/c structure refines only to ca R1 = 10% compared to 4.4% for the P21 structure. The crystal is an inversion twin with a ratio of components of 0.51 (4):0.49 (4).

During the refinement of (2secBP)2-SiPc, electron density peaks were located that were believed to be highly disordered solvent mol­ecules (possibly penta­ne/di­chloro­methane). Attempts made to model the solvent mol­ecule were not successful. The SQUEEZE option (Spek, 2015) in PLATON (Spek, 2009) indicated there was a large solvent cavity 367 A3. In the final cycles of refinement, this contribution (99 electrons) to the electron density was removed from the observed data. The density, the F(000) value, the mol­ecular weight and the formula are given without taking into account the results obtained with SQUEEZE. Similar treatments of disordered solvent mol­ecules were carried out by Stähler et al. (2001), Cox et al. (2003), Mohamed et al. (2003) and Athimoolam et al. (2005).

The crystal of (2secBP)2-SiPc was a non-merehedral twin with a twin law determined by CELL_NOW (Bruker, 2011) of 0.1 0.0 0.0, 0.1 1.0 0.0, 0.3 0.0 1.0. The data were detwinned using TWINABS (Bruker, 2011) giving twin fractions in the ratio 0.92:0.08.

Supplementary Material

Crystal structure: contains datablock(s) 3MP2-SiPc, 3IP2-SiPc, 2secBP2-SiPc. DOI: 10.1107/S205698901600935X/hb7581sup1.cif

e-72-00988-sup1.cif (984KB, cif)

Structure factors: contains datablock(s) 3MP2-SiPc. DOI: 10.1107/S205698901600935X/hb75813MP2-SiPcsup3.hkl

Structure factors: contains datablock(s) 3IP2-SiPc. DOI: 10.1107/S205698901600935X/hb75813IP2-SiPcsup2.hkl

Structure factors: contains datablock(s) 2secBP2-SiPc. DOI: 10.1107/S205698901600935X/hb75812secBP2-SiPcsup4.hkl

Supporting information file. DOI: 10.1107/S205698901600935X/hb7581sup5.pdf

e-72-00988-sup5.pdf (787.2KB, pdf)

Supporting information file. DOI: 10.1107/S205698901600935X/hb7581sup6.tif

Supporting information file. DOI: 10.1107/S205698901600935X/hb7581sup7.tif

CCDC references: 1484189, 1484188, 1484187

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Natural Sciences and Engineer Research Council (NSERC) Banting Post-Doctoral fellowship to BHL and a Discovery Grant to TPB. The authors would also like to acknowledge financial support from Saudi Basic Industries (SABIC). We would also like to thank Dr Alan Lough for his help performing the single-crystal X-ray diffractions.

supplementary crystallographic information

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Crystal data

C46H30N8O2Si F(000) = 784
Mr = 754.87 Dx = 1.424 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2yb Cell parameters from 6829 reflections
a = 10.2566 (4) Å θ = 4.3–66.2°
b = 16.5665 (8) Å µ = 1.04 mm1
c = 11.5120 (5) Å T = 147 K
β = 115.860 (3)° Needle, blue
V = 1760.20 (13) Å3 0.27 × 0.08 × 0.03 mm
Z = 2

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Data collection

Bruker Kappa APEX DUO CCD diffractometer 5548 independent reflections
Radiation source: Bruker ImuS 4909 reflections with I > 2σ(I)
Multi-layer optics monochromator Rint = 0.042
φ and ω scans θmax = 66.5°, θmin = 4.3°
Absorption correction: multi-scan (SADABS; Bruker, 2011) h = −11→12
Tmin = 0.606, Tmax = 0.753 k = −19→18
11133 measured reflections l = −13→11

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6078P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
5548 reflections Δρmax = 0.20 e Å3
516 parameters Δρmin = −0.44 e Å3
1 restraint Absolute structure: Flack (1983), 2431 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.51 (4)

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1 0.25875 (11) 0.47830 (9) 0.25868 (9) 0.02494 (17)
O1 0.2884 (3) 0.39581 (16) 0.1824 (2) 0.0290 (6)
O2 0.2301 (2) 0.56160 (17) 0.33650 (19) 0.0266 (6)
N1 0.4400 (3) 0.5208 (2) 0.2753 (2) 0.0235 (7)
N2 0.3569 (3) 0.5980 (2) 0.0763 (3) 0.0283 (7)
N3 0.1579 (3) 0.5340 (2) 0.0995 (3) 0.0270 (7)
N4 −0.0891 (3) 0.4903 (2) 0.0372 (2) 0.0276 (7)
N5 0.0788 (3) 0.4350 (2) 0.2432 (2) 0.0265 (7)
N6 0.1590 (3) 0.3578 (2) 0.4415 (3) 0.0289 (7)
N7 0.3600 (3) 0.4220 (2) 0.4188 (2) 0.0258 (7)
N8 0.6078 (3) 0.4650 (2) 0.4808 (3) 0.0278 (7)
C1 0.5733 (4) 0.5069 (2) 0.3729 (3) 0.0268 (9)
C2 0.6846 (4) 0.5463 (2) 0.3453 (3) 0.0285 (9)
C3 0.8346 (4) 0.5475 (3) 0.4119 (3) 0.0324 (9)
H3A 0.8835 0.5218 0.4934 0.039*
C4 0.9092 (4) 0.5869 (3) 0.3555 (3) 0.0369 (10)
H4A 1.0120 0.5887 0.3985 0.044*
C5 0.8360 (4) 0.6254 (3) 0.2339 (4) 0.0346 (10)
H5A 0.8906 0.6520 0.1966 0.042*
C6 0.6871 (4) 0.6248 (3) 0.1691 (3) 0.0313 (9)
H6A 0.6376 0.6513 0.0883 0.038*
C7 0.6117 (4) 0.5839 (2) 0.2267 (3) 0.0268 (9)
C8 0.4576 (4) 0.5688 (2) 0.1855 (3) 0.0264 (8)
C9 0.2206 (4) 0.5802 (3) 0.0375 (3) 0.0280 (9)
C10 0.1101 (4) 0.6066 (3) −0.0867 (3) 0.0277 (8)
C11 0.1158 (4) 0.6537 (3) −0.1856 (3) 0.0341 (10)
H11A 0.2035 0.6783 −0.1763 0.041*
C12 −0.0104 (4) 0.6629 (3) −0.2966 (3) 0.0346 (10)
H12A −0.0090 0.6938 −0.3656 0.042*
C13 −0.1409 (4) 0.6280 (3) −0.3111 (3) 0.0350 (10)
H13A −0.2258 0.6353 −0.3895 0.042*
C14 −0.1475 (4) 0.5829 (3) −0.2121 (3) 0.0301 (9)
H14A −0.2361 0.5601 −0.2205 0.036*
C15 −0.0202 (4) 0.5725 (3) −0.1006 (3) 0.0288 (9)
C16 0.0115 (4) 0.5290 (3) 0.0167 (3) 0.0277 (9)
C17 −0.0582 (4) 0.4489 (2) 0.1432 (3) 0.0267 (9)
C18 −0.1672 (4) 0.4097 (2) 0.1710 (3) 0.0277 (9)
C19 −0.3173 (4) 0.4088 (2) 0.1052 (3) 0.0302 (9)
H19A −0.3672 0.4354 0.0247 0.036*
C20 −0.3912 (4) 0.3666 (3) 0.1636 (3) 0.0328 (9)
H20A −0.4939 0.3630 0.1207 0.039*
C21 −0.3177 (4) 0.3299 (3) 0.2828 (4) 0.0352 (10)
H21A −0.3717 0.3032 0.3205 0.042*
C22 −0.1689 (4) 0.3310 (3) 0.3483 (3) 0.0307 (9)
H22A −0.1198 0.3054 0.4299 0.037*
C23 −0.0933 (4) 0.3709 (2) 0.2904 (3) 0.0270 (8)
C24 0.0580 (4) 0.3869 (2) 0.3319 (3) 0.0266 (8)
C25 0.2982 (4) 0.3746 (3) 0.4805 (3) 0.0249 (8)
C26 0.4081 (4) 0.3485 (3) 0.6055 (3) 0.0285 (8)
C27 0.4001 (4) 0.3019 (3) 0.7021 (3) 0.0316 (9)
H27A 0.3114 0.2785 0.6926 0.038*
C28 0.5274 (4) 0.2911 (3) 0.8131 (3) 0.0352 (10)
H28A 0.5264 0.2595 0.8815 0.042*
C29 0.6570 (4) 0.3258 (3) 0.8266 (3) 0.0334 (9)
H29A 0.7421 0.3179 0.9047 0.040*
C30 0.6654 (4) 0.3713 (3) 0.7299 (3) 0.0320 (9)
H30A 0.7544 0.3939 0.7390 0.038*
C31 0.5375 (4) 0.3825 (3) 0.6184 (3) 0.0271 (9)
C32 0.5058 (4) 0.4273 (2) 0.5001 (3) 0.0254 (8)
C33 0.1975 (4) 0.3625 (3) 0.0649 (3) 0.0269 (9)
C34 0.1916 (4) 0.3949 (3) −0.0485 (3) 0.0334 (9)
H34A 0.2538 0.4385 −0.0443 0.040*
C35 0.0947 (4) 0.3641 (3) −0.1699 (3) 0.0369 (10)
C36 0.0095 (4) 0.2991 (3) −0.1735 (4) 0.0413 (11)
H36A −0.0568 0.2774 −0.2541 0.050*
C37 0.0204 (4) 0.2654 (3) −0.0604 (4) 0.0408 (11)
H37A −0.0373 0.2195 −0.0648 0.049*
C38 0.1119 (4) 0.2957 (3) 0.0591 (3) 0.0314 (9)
H38A 0.1165 0.2718 0.1357 0.038*
C39 0.0801 (5) 0.4049 (3) −0.2914 (3) 0.0517 (13)
H39A 0.0626 0.3642 −0.3584 0.077*
H39B 0.1695 0.4344 −0.2744 0.077*
H39C −0.0015 0.4428 −0.3208 0.077*
C40 0.3230 (4) 0.5949 (3) 0.4516 (3) 0.0275 (9)
C41 0.3322 (4) 0.5644 (3) 0.5675 (3) 0.0300 (9)
H41A 0.2701 0.5213 0.5656 0.036*
C42 0.4292 (4) 0.5950 (3) 0.6852 (3) 0.0375 (10)
C43 0.5138 (4) 0.6615 (3) 0.6862 (3) 0.0377 (10)
H43A 0.5814 0.6836 0.7659 0.045*
C44 0.4987 (4) 0.6952 (3) 0.5704 (4) 0.0346 (9)
H44A 0.5532 0.7419 0.5720 0.042*
C45 0.4063 (4) 0.6623 (3) 0.4537 (3) 0.0336 (9)
H45A 0.3991 0.6851 0.3754 0.040*
C46 0.4508 (5) 0.5569 (3) 0.8108 (3) 0.0514 (12)
H46A 0.4249 0.4996 0.7968 0.077*
H46B 0.3891 0.5840 0.8440 0.077*
H46C 0.5525 0.5622 0.8734 0.077*

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0259 (4) 0.0263 (4) 0.0259 (4) −0.0001 (3) 0.0143 (3) 0.0008 (3)
O1 0.0319 (12) 0.0291 (17) 0.0296 (11) −0.0004 (11) 0.0167 (10) −0.0026 (10)
O2 0.0232 (11) 0.0313 (17) 0.0263 (11) −0.0027 (10) 0.0117 (10) −0.0046 (10)
N1 0.0230 (13) 0.0267 (18) 0.0247 (13) −0.0033 (12) 0.0141 (12) −0.0011 (12)
N2 0.0321 (15) 0.025 (2) 0.0295 (14) −0.0007 (13) 0.0154 (13) 0.0011 (12)
N3 0.0293 (15) 0.028 (2) 0.0296 (13) −0.0007 (13) 0.0181 (12) −0.0044 (12)
N4 0.0275 (14) 0.032 (2) 0.0247 (13) 0.0007 (13) 0.0125 (12) −0.0017 (12)
N5 0.0299 (14) 0.0259 (19) 0.0254 (13) 0.0006 (13) 0.0136 (12) 0.0001 (12)
N6 0.0329 (15) 0.029 (2) 0.0302 (14) −0.0011 (13) 0.0186 (13) −0.0004 (12)
N7 0.0296 (15) 0.0260 (19) 0.0264 (13) 0.0007 (13) 0.0166 (12) 0.0047 (12)
N8 0.0271 (14) 0.029 (2) 0.0320 (14) −0.0009 (12) 0.0173 (12) 0.0016 (12)
C1 0.0330 (18) 0.027 (2) 0.0253 (16) −0.0025 (15) 0.0177 (15) −0.0053 (14)
C2 0.0338 (18) 0.024 (2) 0.0359 (17) −0.0014 (16) 0.0230 (16) −0.0017 (15)
C3 0.0306 (18) 0.036 (3) 0.0338 (17) −0.0027 (16) 0.0167 (16) −0.0024 (16)
C4 0.0291 (18) 0.041 (3) 0.043 (2) −0.0025 (16) 0.0177 (17) −0.0079 (17)
C5 0.040 (2) 0.032 (3) 0.0430 (19) −0.0036 (17) 0.0284 (18) 0.0026 (16)
C6 0.0333 (19) 0.031 (3) 0.0369 (18) −0.0015 (16) 0.0218 (17) 0.0027 (15)
C7 0.0313 (18) 0.025 (2) 0.0281 (16) −0.0010 (15) 0.0162 (15) −0.0013 (14)
C8 0.0308 (17) 0.023 (2) 0.0327 (16) −0.0013 (15) 0.0206 (15) −0.0071 (14)
C9 0.0333 (19) 0.026 (2) 0.0334 (17) 0.0006 (15) 0.0221 (16) −0.0040 (15)
C10 0.0326 (18) 0.026 (2) 0.0246 (15) 0.0015 (16) 0.0120 (15) 0.0011 (15)
C11 0.0354 (19) 0.035 (3) 0.0378 (18) −0.0009 (17) 0.0216 (17) 0.0033 (17)
C12 0.042 (2) 0.034 (3) 0.0303 (17) 0.0005 (17) 0.0177 (17) 0.0080 (16)
C13 0.040 (2) 0.035 (3) 0.0295 (17) 0.0091 (17) 0.0150 (16) 0.0040 (16)
C14 0.0299 (17) 0.026 (2) 0.0345 (17) 0.0033 (16) 0.0145 (16) −0.0014 (15)
C15 0.0363 (19) 0.026 (2) 0.0279 (15) 0.0045 (16) 0.0173 (15) −0.0027 (15)
C16 0.0250 (17) 0.030 (3) 0.0297 (16) 0.0028 (16) 0.0138 (15) −0.0011 (15)
C17 0.0237 (17) 0.026 (2) 0.0297 (16) 0.0031 (15) 0.0114 (15) −0.0018 (14)
C18 0.0281 (17) 0.027 (2) 0.0305 (16) −0.0011 (16) 0.0155 (15) −0.0064 (15)
C19 0.0274 (17) 0.029 (2) 0.0354 (17) −0.0008 (15) 0.0145 (16) −0.0080 (15)
C20 0.0295 (18) 0.033 (3) 0.0403 (19) −0.0044 (16) 0.0195 (16) −0.0083 (17)
C21 0.0354 (19) 0.033 (3) 0.050 (2) −0.0074 (18) 0.0299 (18) −0.0115 (17)
C22 0.0373 (19) 0.026 (2) 0.0344 (18) −0.0046 (16) 0.0204 (16) −0.0048 (15)
C23 0.0281 (18) 0.026 (2) 0.0318 (16) −0.0011 (15) 0.0178 (15) −0.0049 (15)
C24 0.0341 (19) 0.021 (2) 0.0288 (16) 0.0013 (16) 0.0177 (15) 0.0015 (14)
C25 0.0251 (17) 0.024 (2) 0.0275 (15) 0.0006 (14) 0.0128 (14) 0.0027 (14)
C26 0.0352 (18) 0.024 (2) 0.0326 (17) 0.0026 (16) 0.0205 (16) 0.0019 (15)
C27 0.0373 (19) 0.026 (2) 0.0326 (18) 0.0024 (16) 0.0161 (17) 0.0059 (16)
C28 0.043 (2) 0.030 (3) 0.0352 (19) 0.0047 (18) 0.0188 (17) 0.0020 (16)
C29 0.0335 (19) 0.034 (3) 0.0288 (17) 0.0014 (16) 0.0099 (16) 0.0000 (15)
C30 0.0336 (19) 0.035 (3) 0.0278 (16) 0.0002 (17) 0.0138 (15) 0.0005 (16)
C31 0.0265 (17) 0.030 (2) 0.0265 (16) 0.0019 (15) 0.0135 (15) 0.0021 (15)
C32 0.0310 (17) 0.022 (2) 0.0270 (15) −0.0004 (15) 0.0162 (15) −0.0009 (14)
C33 0.0258 (17) 0.028 (2) 0.0266 (16) 0.0010 (15) 0.0114 (15) −0.0017 (15)
C34 0.0383 (19) 0.033 (3) 0.0378 (19) 0.0046 (17) 0.0245 (16) −0.0002 (16)
C35 0.045 (2) 0.033 (3) 0.0327 (18) 0.0109 (18) 0.0172 (17) −0.0020 (17)
C36 0.040 (2) 0.037 (3) 0.042 (2) 0.0057 (18) 0.0128 (18) −0.0098 (18)
C37 0.038 (2) 0.033 (3) 0.051 (2) 0.0008 (17) 0.0188 (19) −0.0056 (19)
C38 0.0345 (18) 0.024 (2) 0.044 (2) 0.0034 (16) 0.0249 (17) 0.0016 (16)
C39 0.075 (3) 0.054 (3) 0.0285 (17) 0.016 (2) 0.0245 (19) 0.0034 (18)
C40 0.0239 (16) 0.029 (2) 0.0314 (16) 0.0067 (15) 0.0138 (14) 0.0010 (15)
C41 0.0385 (19) 0.024 (2) 0.0309 (17) −0.0026 (16) 0.0186 (16) −0.0013 (14)
C42 0.041 (2) 0.041 (3) 0.0330 (17) 0.0140 (18) 0.0181 (16) 0.0023 (17)
C43 0.039 (2) 0.034 (3) 0.0355 (18) 0.0060 (17) 0.0115 (16) −0.0079 (16)
C44 0.0368 (19) 0.024 (2) 0.046 (2) −0.0021 (16) 0.0216 (18) −0.0039 (17)
C45 0.038 (2) 0.029 (3) 0.0331 (18) −0.0027 (17) 0.0149 (17) −0.0001 (16)
C46 0.068 (3) 0.055 (3) 0.0336 (19) 0.013 (2) 0.024 (2) 0.0043 (19)

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon. Geometric parameters (Å, º)

Si1—O1 1.722 (3) C18—C23 1.402 (5)
Si1—O2 1.739 (3) C19—C20 1.401 (6)
Si1—N3 1.904 (3) C19—H19A 0.9500
Si1—N5 1.915 (3) C20—C21 1.384 (6)
Si1—N7 1.917 (3) C20—H20A 0.9500
Si1—N1 1.918 (3) C21—C22 1.377 (5)
O1—C33 1.379 (4) C21—H21A 0.9500
O2—C40 1.367 (4) C22—C23 1.391 (6)
N1—C1 1.358 (5) C22—H22A 0.9500
N1—C8 1.378 (5) C23—C24 1.435 (5)
N2—C9 1.302 (5) C25—C26 1.453 (5)
N2—C8 1.322 (5) C26—C27 1.386 (6)
N3—C9 1.382 (5) C26—C31 1.389 (5)
N3—C16 1.387 (5) C27—C28 1.384 (5)
N4—C17 1.313 (5) C27—H27A 0.9500
N4—C16 1.320 (5) C28—C29 1.394 (6)
N5—C24 1.383 (5) C28—H28A 0.9500
N5—C17 1.393 (4) C29—C30 1.377 (6)
N6—C25 1.325 (5) C29—H29A 0.9500
N6—C24 1.326 (4) C30—C31 1.391 (5)
N7—C32 1.378 (5) C30—H30A 0.9500
N7—C25 1.385 (5) C31—C32 1.457 (5)
N8—C32 1.318 (5) C33—C34 1.389 (5)
N8—C1 1.329 (5) C33—C38 1.395 (6)
C1—C2 1.464 (5) C34—C35 1.410 (5)
C2—C7 1.386 (5) C34—H34A 0.9500
C2—C3 1.388 (5) C35—C36 1.377 (7)
C3—C4 1.367 (6) C35—C39 1.501 (6)
C3—H3A 0.9500 C36—C37 1.376 (7)
C4—C5 1.418 (6) C36—H36A 0.9500
C4—H4A 0.9500 C37—C38 1.378 (5)
C5—C6 1.377 (5) C37—H37A 0.9500
C5—H5A 0.9500 C38—H38A 0.9500
C6—C7 1.395 (5) C39—H39A 0.9800
C6—H6A 0.9500 C39—H39B 0.9800
C7—C8 1.459 (5) C39—H39C 0.9800
C9—C10 1.451 (5) C40—C41 1.391 (5)
C10—C15 1.395 (6) C40—C45 1.400 (6)
C10—C11 1.402 (6) C41—C42 1.381 (5)
C11—C12 1.374 (5) C41—H41A 0.9500
C11—H11A 0.9500 C42—C43 1.399 (7)
C12—C13 1.398 (6) C42—C46 1.503 (6)
C12—H12A 0.9500 C43—C44 1.390 (6)
C13—C14 1.390 (6) C43—H43A 0.9500
C13—H13A 0.9500 C44—C45 1.374 (5)
C14—C15 1.385 (5) C44—H44A 0.9500
C14—H14A 0.9500 C45—H45A 0.9500
C15—C16 1.437 (5) C46—H46A 0.9800
C17—C18 1.444 (6) C46—H46B 0.9800
C18—C19 1.387 (5) C46—H46C 0.9800
O1—Si1—O2 179.59 (14) C20—C19—H19A 121.7
O1—Si1—N3 92.10 (13) C21—C20—C19 121.3 (3)
O2—Si1—N3 88.17 (13) C21—C20—H20A 119.4
O1—Si1—N5 91.88 (14) C19—C20—H20A 119.4
O2—Si1—N5 88.43 (13) C22—C21—C20 122.2 (4)
N3—Si1—N5 89.72 (13) C22—C21—H21A 118.9
O1—Si1—N7 87.84 (13) C20—C21—H21A 118.9
O2—Si1—N7 91.89 (13) C21—C22—C23 117.4 (4)
N3—Si1—N7 179.9 (2) C21—C22—H22A 121.3
N5—Si1—N7 90.18 (13) C23—C22—H22A 121.3
O1—Si1—N1 87.88 (13) C22—C23—C18 120.7 (3)
O2—Si1—N1 91.81 (14) C22—C23—C24 132.5 (3)
N3—Si1—N1 90.80 (13) C18—C23—C24 106.6 (3)
N5—Si1—N1 179.44 (19) N6—C24—N5 127.2 (3)
N7—Si1—N1 89.30 (13) N6—C24—C23 122.2 (3)
C33—O1—Si1 128.6 (2) N5—C24—C23 110.6 (3)
C40—O2—Si1 128.2 (2) N6—C25—N7 127.7 (3)
C1—N1—C8 107.7 (3) N6—C25—C26 122.0 (3)
C1—N1—Si1 127.1 (3) N7—C25—C26 110.2 (3)
C8—N1—Si1 125.2 (2) C27—C26—C31 121.9 (3)
C9—N2—C8 121.4 (3) C27—C26—C25 131.9 (3)
C9—N3—C16 106.6 (3) C31—C26—C25 106.2 (3)
C9—N3—Si1 125.9 (2) C28—C27—C26 116.8 (4)
C16—N3—Si1 127.1 (3) C28—C27—H27A 121.6
C17—N4—C16 122.0 (3) C26—C27—H27A 121.6
C24—N5—C17 106.3 (3) C27—C28—C29 121.3 (4)
C24—N5—Si1 126.8 (2) C27—C28—H28A 119.3
C17—N5—Si1 126.8 (3) C29—C28—H28A 119.3
C25—N6—C24 121.7 (3) C30—C29—C28 121.9 (3)
C32—N7—C25 106.9 (3) C30—C29—H29A 119.1
C32—N7—Si1 126.5 (3) C28—C29—H29A 119.1
C25—N7—Si1 126.3 (2) C29—C30—C31 116.9 (4)
C32—N8—C1 119.9 (3) C29—C30—H30A 121.5
N8—C1—N1 128.5 (4) C31—C30—H30A 121.5
N8—C1—C2 121.4 (3) C26—C31—C30 121.1 (3)
N1—C1—C2 110.1 (3) C26—C31—C32 107.0 (3)
C7—C2—C3 121.9 (4) C30—C31—C32 131.8 (4)
C7—C2—C1 106.1 (3) N8—C32—N7 128.4 (3)
C3—C2—C1 131.9 (3) N8—C32—C31 121.9 (3)
C4—C3—C2 117.4 (3) N7—C32—C31 109.7 (3)
C4—C3—H3A 121.3 O1—C33—C34 120.0 (4)
C2—C3—H3A 121.3 O1—C33—C38 120.4 (3)
C3—C4—C5 121.2 (3) C34—C33—C38 119.5 (3)
C3—C4—H4A 119.4 C33—C34—C35 121.0 (4)
C5—C4—H4A 119.4 C33—C34—H34A 119.5
C6—C5—C4 121.1 (4) C35—C34—H34A 119.5
C6—C5—H5A 119.5 C36—C35—C34 118.5 (4)
C4—C5—H5A 119.5 C36—C35—C39 121.3 (4)
C5—C6—C7 117.4 (3) C34—C35—C39 120.1 (4)
C5—C6—H6A 121.3 C37—C36—C35 120.1 (4)
C7—C6—H6A 121.3 C37—C36—H36A 120.0
C2—C7—C6 120.9 (3) C35—C36—H36A 120.0
C2—C7—C8 106.6 (3) C36—C37—C38 122.3 (4)
C6—C7—C8 132.4 (3) C36—C37—H37A 118.8
N2—C8—N1 128.4 (3) C38—C37—H37A 118.8
N2—C8—C7 122.2 (3) C37—C38—C33 118.6 (4)
N1—C8—C7 109.4 (3) C37—C38—H38A 120.7
N2—C9—N3 128.3 (3) C33—C38—H38A 120.7
N2—C9—C10 122.0 (4) C35—C39—H39A 109.5
N3—C9—C10 109.7 (3) C35—C39—H39B 109.5
C15—C10—C11 120.6 (3) H39A—C39—H39B 109.5
C15—C10—C9 106.8 (3) C35—C39—H39C 109.5
C11—C10—C9 132.6 (3) H39A—C39—H39C 109.5
C12—C11—C10 117.4 (4) H39B—C39—H39C 109.5
C12—C11—H11A 121.3 O2—C40—C41 120.7 (4)
C10—C11—H11A 121.3 O2—C40—C45 120.1 (3)
C11—C12—C13 122.0 (4) C41—C40—C45 119.2 (3)
C11—C12—H12A 119.0 C42—C41—C40 121.7 (4)
C13—C12—H12A 119.0 C42—C41—H41A 119.2
C14—C13—C12 120.7 (3) C40—C41—H41A 119.2
C14—C13—H13A 119.6 C41—C42—C43 118.5 (4)
C12—C13—H13A 119.6 C41—C42—C46 122.0 (4)
C15—C14—C13 117.6 (4) C43—C42—C46 119.5 (4)
C15—C14—H14A 121.2 C44—C43—C42 119.9 (3)
C13—C14—H14A 121.2 C44—C43—H43A 120.0
C14—C15—C10 121.6 (4) C42—C43—H43A 120.0
C14—C15—C16 131.9 (4) C45—C44—C43 121.3 (4)
C10—C15—C16 106.4 (3) C45—C44—H44A 119.4
N4—C16—N3 127.1 (3) C43—C44—H44A 119.4
N4—C16—C15 122.5 (3) C44—C45—C40 119.2 (4)
N3—C16—C15 110.4 (3) C44—C45—H45A 120.4
N4—C17—N5 127.0 (4) C40—C45—H45A 120.4
N4—C17—C18 123.0 (3) C42—C46—H46A 109.5
N5—C17—C18 110.0 (3) C42—C46—H46B 109.5
C19—C18—C23 121.8 (4) H46A—C46—H46B 109.5
C19—C18—C17 131.7 (4) C42—C46—H46C 109.5
C23—C18—C17 106.4 (3) H46A—C46—H46C 109.5
C18—C19—C20 116.6 (4) H46B—C46—H46C 109.5
C18—C19—H19A 121.7

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Crystal data

C44H24I2N8O2Si F(000) = 960
Mr = 978.60 Dx = 1.788 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.6431 (6) Å Cell parameters from 9148 reflections
b = 19.587 (1) Å θ = 2.7–27.5°
c = 7.5403 (4) Å µ = 1.82 mm1
β = 103.222 (1)° T = 147 K
V = 1817.78 (16) Å3 Plate, blue
Z = 2 0.40 × 0.22 × 0.04 mm

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Data collection

Bruker Kappa APEX DUO CCD diffractometer 3721 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monocnromator Rint = 0.024
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2011) h = −16→16
Tmin = 0.635, Tmax = 0.746 k = −25→25
31089 measured reflections l = −9→7
4119 independent reflections

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0505P)2 + 4.7192P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
4119 reflections Δρmax = 2.25 e Å3
259 parameters Δρmin = −1.33 e Å3

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.58373 (2) 0.18313 (2) 0.00675 (4) 0.03731 (10)
Si1 1.0000 0.0000 0.0000 0.0150 (2)
O1 0.95195 (16) 0.07333 (10) −0.1198 (3) 0.0179 (4)
N1 0.88930 (19) 0.00288 (12) 0.1341 (3) 0.0169 (4)
N2 0.9741 (2) 0.07375 (12) 0.3918 (3) 0.0193 (5)
N3 1.09243 (18) 0.05331 (12) 0.1863 (3) 0.0165 (4)
N4 1.25478 (19) 0.06065 (12) 0.0671 (3) 0.0195 (5)
C1 0.8921 (2) 0.03894 (14) 0.2930 (4) 0.0176 (5)
C2 1.0663 (2) 0.07947 (14) 0.3410 (4) 0.0179 (5)
C3 1.1573 (2) 0.11803 (14) 0.4453 (4) 0.0201 (5)
C4 1.1716 (3) 0.15271 (16) 0.6108 (4) 0.0254 (6)
H4A 1.1165 0.1537 0.6778 0.031*
C5 1.2702 (3) 0.18575 (16) 0.6727 (5) 0.0298 (7)
H5A 1.2828 0.2102 0.7843 0.036*
C6 1.3518 (3) 0.18382 (16) 0.5743 (5) 0.0293 (7)
H6A 1.4180 0.2074 0.6208 0.035*
C7 1.3387 (3) 0.14851 (15) 0.4112 (4) 0.0248 (6)
H7A 1.3945 0.1468 0.3455 0.030*
C8 1.2387 (2) 0.11562 (14) 0.3486 (4) 0.0196 (5)
C9 1.1969 (2) 0.07466 (14) 0.1873 (4) 0.0180 (5)
C10 1.2146 (2) 0.02365 (14) −0.0789 (4) 0.0179 (5)
C11 1.2804 (2) 0.00286 (14) −0.2035 (4) 0.0199 (5)
C12 1.3895 (2) 0.01224 (16) −0.2023 (4) 0.0238 (6)
H12A 1.4349 0.0400 −0.1130 0.029*
C13 1.4293 (3) −0.02018 (18) −0.3354 (5) 0.0289 (7)
H13A 1.5042 −0.0163 −0.3348 0.035*
C14 1.3613 (3) −0.05895 (17) −0.4722 (4) 0.0280 (6)
H14A 1.3911 −0.0802 −0.5630 0.034*
C15 1.2519 (3) −0.06679 (15) −0.4774 (4) 0.0227 (6)
H15A 1.2054 −0.0918 −0.5719 0.027*
C16 1.2129 (2) −0.03648 (14) −0.3382 (4) 0.0193 (5)
C17 0.9045 (2) 0.12947 (14) −0.0640 (4) 0.0180 (5)
C18 0.7937 (2) 0.12940 (14) −0.0651 (4) 0.0192 (5)
H18A 0.7506 0.0901 −0.1044 0.023*
C19 0.7474 (2) 0.18679 (15) −0.0088 (4) 0.0223 (6)
C20 0.8061 (3) 0.24578 (17) 0.0427 (5) 0.0317 (7)
H20A 0.7728 0.2848 0.0816 0.038*
C21 0.9147 (3) 0.24686 (17) 0.0365 (5) 0.0342 (7)
H21A 0.9555 0.2876 0.0667 0.041*
C22 0.9651 (3) 0.18879 (15) −0.0136 (4) 0.0246 (6)
H22A 1.0402 0.1897 −0.0134 0.030*

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02480 (14) 0.04162 (16) 0.04785 (17) 0.00971 (8) 0.01317 (10) 0.00607 (10)
Si1 0.0145 (5) 0.0154 (5) 0.0134 (5) 0.0021 (4) −0.0001 (4) −0.0025 (4)
O1 0.0204 (9) 0.0172 (9) 0.0149 (9) 0.0057 (7) 0.0016 (7) −0.0005 (7)
N1 0.0174 (11) 0.0157 (11) 0.0159 (10) 0.0014 (8) 0.0000 (8) −0.0015 (8)
N2 0.0215 (12) 0.0198 (11) 0.0155 (11) 0.0030 (9) 0.0016 (9) −0.0022 (8)
N3 0.0158 (10) 0.0175 (11) 0.0145 (10) 0.0018 (8) 0.0000 (8) −0.0026 (8)
N4 0.0190 (11) 0.0189 (11) 0.0196 (11) −0.0014 (9) 0.0021 (9) −0.0002 (9)
C1 0.0211 (13) 0.0153 (12) 0.0157 (12) 0.0043 (10) 0.0029 (10) 0.0002 (9)
C2 0.0209 (13) 0.0153 (12) 0.0149 (12) 0.0025 (10) −0.0014 (10) −0.0026 (9)
C3 0.0229 (14) 0.0169 (13) 0.0170 (13) 0.0025 (10) −0.0025 (10) −0.0008 (10)
C4 0.0295 (15) 0.0222 (14) 0.0205 (14) 0.0033 (12) −0.0026 (11) −0.0052 (11)
C5 0.0363 (18) 0.0219 (15) 0.0243 (15) −0.0023 (12) −0.0074 (13) −0.0073 (11)
C6 0.0322 (17) 0.0227 (15) 0.0266 (16) −0.0081 (12) −0.0065 (13) −0.0014 (11)
C7 0.0247 (15) 0.0194 (14) 0.0261 (15) −0.0028 (11) −0.0027 (11) 0.0008 (11)
C8 0.0218 (13) 0.0153 (12) 0.0180 (13) 0.0010 (10) −0.0031 (10) −0.0012 (10)
C9 0.0165 (12) 0.0166 (12) 0.0180 (13) 0.0004 (10) −0.0024 (10) −0.0012 (10)
C10 0.0185 (13) 0.0162 (12) 0.0182 (12) 0.0010 (10) 0.0028 (10) 0.0016 (10)
C11 0.0231 (14) 0.0175 (13) 0.0189 (13) 0.0009 (10) 0.0043 (11) 0.0027 (10)
C12 0.0231 (14) 0.0264 (15) 0.0219 (14) −0.0049 (11) 0.0053 (11) 0.0017 (11)
C13 0.0243 (15) 0.0351 (17) 0.0305 (16) −0.0032 (13) 0.0128 (12) 0.0025 (13)
C14 0.0333 (17) 0.0305 (16) 0.0246 (15) 0.0005 (13) 0.0159 (13) −0.0009 (12)
C15 0.0280 (15) 0.0212 (14) 0.0199 (13) −0.0016 (11) 0.0078 (11) −0.0007 (10)
C16 0.0222 (13) 0.0170 (13) 0.0183 (13) 0.0009 (10) 0.0040 (10) 0.0025 (10)
C17 0.0222 (13) 0.0165 (12) 0.0144 (12) 0.0024 (10) 0.0021 (10) −0.0007 (9)
C18 0.0217 (13) 0.0182 (13) 0.0159 (12) −0.0006 (10) 0.0008 (10) 0.0027 (10)
C19 0.0200 (14) 0.0256 (15) 0.0217 (14) 0.0035 (11) 0.0054 (11) 0.0039 (10)
C20 0.0393 (19) 0.0215 (15) 0.0365 (18) 0.0048 (13) 0.0132 (14) −0.0069 (13)
C21 0.0388 (19) 0.0211 (15) 0.0426 (19) −0.0084 (13) 0.0092 (15) −0.0101 (13)
C22 0.0216 (15) 0.0233 (15) 0.0282 (16) −0.0027 (11) 0.0041 (12) −0.0017 (11)

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon . Geometric parameters (Å, º)

I1—C19 2.100 (3) C7—C8 1.401 (4)
Si1—O1i 1.7314 (19) C7—H7A 0.9500
Si1—O1 1.7314 (19) C8—C9 1.452 (4)
Si1—N1 1.906 (2) C10—N1i 1.385 (4)
Si1—N1i 1.906 (2) C10—C11 1.449 (4)
Si1—N3i 1.918 (2) C11—C12 1.389 (4)
Si1—N3 1.918 (2) C11—C16 1.399 (4)
O1—C17 1.364 (3) C12—C13 1.376 (4)
N1—C1 1.385 (3) C12—H12A 0.9500
N1—C10i 1.385 (4) C13—C14 1.405 (5)
N2—C2 1.313 (4) C13—H13A 0.9500
N2—C1 1.319 (4) C14—C15 1.383 (4)
N3—C2 1.381 (3) C14—H14A 0.9500
N3—C9 1.384 (4) C15—C16 1.390 (4)
N4—C9 1.317 (4) C15—H15A 0.9500
N4—C10 1.319 (4) C16—C1i 1.444 (4)
C1—C16i 1.444 (4) C17—C22 1.396 (4)
C2—C3 1.449 (4) C17—C18 1.399 (4)
C3—C8 1.392 (4) C18—C19 1.378 (4)
C3—C4 1.396 (4) C18—H18A 0.9500
C4—C5 1.388 (5) C19—C20 1.381 (5)
C4—H4A 0.9500 C20—C21 1.384 (5)
C5—C6 1.401 (5) C20—H20A 0.9500
C5—H5A 0.9500 C21—C22 1.397 (5)
C6—C7 1.388 (4) C21—H21A 0.9500
C6—H6A 0.9500 C22—H22A 0.9500
O1i—Si1—O1 180.0 C3—C8—C7 121.8 (3)
O1i—Si1—N1 87.72 (9) C3—C8—C9 106.6 (2)
O1—Si1—N1 92.28 (9) C7—C8—C9 131.6 (3)
O1i—Si1—N1i 92.28 (9) N4—C9—N3 127.8 (2)
O1—Si1—N1i 87.72 (9) N4—C9—C8 122.6 (3)
N1—Si1—N1i 180.0 N3—C9—C8 109.6 (2)
O1i—Si1—N3i 90.74 (9) N4—C10—N1i 127.9 (3)
O1—Si1—N3i 89.26 (9) N4—C10—C11 121.8 (3)
N1—Si1—N3i 90.37 (10) N1i—C10—C11 110.2 (2)
N1i—Si1—N3i 89.63 (10) C12—C11—C16 121.2 (3)
O1i—Si1—N3 89.26 (9) C12—C11—C10 132.5 (3)
O1—Si1—N3 90.74 (9) C16—C11—C10 106.3 (2)
N1—Si1—N3 89.63 (10) C13—C12—C11 117.5 (3)
N1i—Si1—N3 90.37 (10) C13—C12—H12A 121.2
N3i—Si1—N3 180.0 C11—C12—H12A 121.2
C17—O1—Si1 129.36 (17) C12—C13—C14 121.4 (3)
C1—N1—C10i 106.6 (2) C12—C13—H13A 119.3
C1—N1—Si1 126.73 (19) C14—C13—H13A 119.3
C10i—N1—Si1 126.19 (18) C15—C14—C13 121.4 (3)
C2—N2—C1 121.0 (2) C15—C14—H14A 119.3
C2—N3—C9 107.2 (2) C13—C14—H14A 119.3
C2—N3—Si1 126.65 (19) C14—C15—C16 117.1 (3)
C9—N3—Si1 126.11 (19) C14—C15—H15A 121.4
C9—N4—C10 121.4 (2) C16—C15—H15A 121.4
N2—C1—N1 127.8 (3) C15—C16—C11 121.3 (3)
N2—C1—C16i 122.0 (2) C15—C16—C1i 131.9 (3)
N1—C1—C16i 110.1 (2) C11—C16—C1i 106.7 (2)
N2—C2—N3 127.9 (2) O1—C17—C22 120.2 (3)
N2—C2—C3 122.3 (3) O1—C17—C18 120.5 (2)
N3—C2—C3 109.8 (2) C22—C17—C18 119.2 (3)
C8—C3—C4 121.6 (3) C19—C18—C17 119.5 (3)
C8—C3—C2 106.8 (2) C19—C18—H18A 120.2
C4—C3—C2 131.6 (3) C17—C18—H18A 120.2
C5—C4—C3 116.8 (3) C18—C19—C20 122.0 (3)
C5—C4—H4A 121.6 C18—C19—I1 118.9 (2)
C3—C4—H4A 121.6 C20—C19—I1 119.1 (2)
C4—C5—C6 121.5 (3) C19—C20—C21 118.5 (3)
C4—C5—H5A 119.2 C19—C20—H20A 120.7
C6—C5—H5A 119.2 C21—C20—H20A 120.7
C7—C6—C5 122.0 (3) C20—C21—C22 120.9 (3)
C7—C6—H6A 119.0 C20—C21—H21A 119.5
C5—C6—H6A 119.0 C22—C21—H21A 119.5
C6—C7—C8 116.3 (3) C17—C22—C21 119.7 (3)
C6—C7—H7A 121.9 C17—C22—H22A 120.1
C8—C7—H7A 121.9 C21—C22—H22A 120.1
N1—Si1—O1—C17 34.0 (2) C2—N3—C9—C8 0.2 (3)
N1i—Si1—O1—C17 −146.0 (2) Si1—N3—C9—C8 178.24 (18)
N3i—Si1—O1—C17 124.3 (2) C3—C8—C9—N4 −178.4 (3)
N3—Si1—O1—C17 −55.7 (2) C7—C8—C9—N4 1.3 (5)
C2—N2—C1—N1 2.3 (4) C3—C8—C9—N3 0.4 (3)
C2—N2—C1—C16i −174.9 (3) C7—C8—C9—N3 −179.9 (3)
C10i—N1—C1—N2 −178.7 (3) C9—N4—C10—N1i 3.0 (4)
Si1—N1—C1—N2 −6.1 (4) C9—N4—C10—C11 −174.4 (3)
C10i—N1—C1—C16i −1.2 (3) N4—C10—C11—C12 2.4 (5)
Si1—N1—C1—C16i 171.45 (18) N1i—C10—C11—C12 −175.4 (3)
C1—N2—C2—N3 1.0 (4) N4—C10—C11—C16 178.7 (3)
C1—N2—C2—C3 179.2 (3) N1i—C10—C11—C16 0.8 (3)
C9—N3—C2—N2 177.7 (3) C16—C11—C12—C13 −1.8 (4)
Si1—N3—C2—N2 −0.4 (4) C10—C11—C12—C13 174.0 (3)
C9—N3—C2—C3 −0.7 (3) C11—C12—C13—C14 2.7 (5)
Si1—N3—C2—C3 −178.75 (18) C12—C13—C14—C15 −0.8 (5)
N2—C2—C3—C8 −177.5 (3) C13—C14—C15—C16 −2.0 (5)
N3—C2—C3—C8 1.0 (3) C14—C15—C16—C11 2.9 (4)
N2—C2—C3—C4 2.8 (5) C14—C15—C16—C1i −174.1 (3)
N3—C2—C3—C4 −178.7 (3) C12—C11—C16—C15 −1.0 (4)
C8—C3—C4—C5 1.2 (4) C10—C11—C16—C15 −177.7 (3)
C2—C3—C4—C5 −179.2 (3) C12—C11—C16—C1i 176.7 (3)
C3—C4—C5—C6 −0.5 (5) C10—C11—C16—C1i −0.1 (3)
C4—C5—C6—C7 −0.5 (5) Si1—O1—C17—C22 100.8 (3)
C5—C6—C7—C8 0.9 (5) Si1—O1—C17—C18 −82.4 (3)
C4—C3—C8—C7 −0.8 (4) O1—C17—C18—C19 −179.8 (2)
C2—C3—C8—C7 179.5 (3) C22—C17—C18—C19 −2.9 (4)
C4—C3—C8—C9 178.9 (3) C17—C18—C19—C20 2.5 (4)
C2—C3—C8—C9 −0.8 (3) C17—C18—C19—I1 −175.6 (2)
C6—C7—C8—C3 −0.3 (4) C18—C19—C20—C21 0.2 (5)
C6—C7—C8—C9 −179.9 (3) I1—C19—C20—C21 178.3 (3)
C10—N4—C9—N3 1.9 (4) C19—C20—C21—C22 −2.6 (6)
C10—N4—C9—C8 −179.6 (3) O1—C17—C22—C21 177.5 (3)
C2—N3—C9—N4 178.9 (3) C18—C17—C22—C21 0.6 (5)
Si1—N3—C9—N4 −3.1 (4) C20—C21—C22—C17 2.1 (5)

Symmetry code: (i) −x+2, −y, −z.

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Crystal data

C52H42N8O2Si F(000) = 3520
Mr = 839.03 Dx = 1.194 Mg m3
Orthorhombic, Ibca Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -I 2b 2c Cell parameters from 586 reflections
a = 10.9239 (3) Å θ = 4.4–35.1°
b = 25.7282 (7) Å µ = 0.83 mm1
c = 33.2065 (8) Å T = 220 K
V = 9332.8 (4) Å3 Plate, blue
Z = 8 0.12 × 0.12 × 0.01 mm

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Data collection

Bruker Kappa APEX DUO CCD diffractometer 4085 independent reflections
Radiation source: fine-focus sealed tube 2969 reflections with I > 2σ(I)
Multi-layer optics monochromator Rint = 0.104
φ and ω scans θmax = 66.8°, θmin = 3.4°
Absorption correction: multi-scan (TWINABS; Bruker, 2007) h = −12→12
Tmin = 0.621, Tmax = 0.753 k = −30→30
120855 measured reflections l = −38→38

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1166P)2 + 6.9892P] where P = (Fo2 + 2Fc2)/3
4085 reflections (Δ/σ)max < 0.001
287 parameters Δρmax = 0.40 e Å3
4 restraints Δρmin = −0.36 e Å3

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1 0.0000 0.2500 0.14722 (3) 0.0424 (3)
O1 0.10423 (18) 0.30013 (7) 0.15037 (5) 0.0502 (5)
N1 0.0000 0.2500 0.09000 (10) 0.0477 (8)
N2 0.1543 (2) 0.18453 (10) 0.07595 (7) 0.0557 (6)
N3 0.1325 (2) 0.20136 (9) 0.14701 (6) 0.0469 (6)
N4 0.1747 (2) 0.19492 (9) 0.21844 (7) 0.0467 (6)
N5 0.0000 0.2500 0.20454 (8) 0.0414 (7)
C1 0.0427 (3) 0.22952 (14) −0.04755 (9) 0.0655 (9)
H1 0.0707 0.2161 −0.0722 0.079*
C2 0.0858 (3) 0.20892 (13) −0.01231 (8) 0.0600 (8)
H2 0.1428 0.1816 −0.0123 0.072*
C3 0.0421 (3) 0.22993 (12) 0.02363 (8) 0.0527 (7)
C4 0.0689 (3) 0.21830 (11) 0.06512 (8) 0.0484 (7)
C5 0.1844 (3) 0.17777 (11) 0.11392 (8) 0.0535 (7)
C6 0.2850 (3) 0.14513 (12) 0.12648 (9) 0.0586 (8)
C7 0.3677 (3) 0.11427 (14) 0.10481 (11) 0.0758 (11)
H7A 0.3629 0.1112 0.0767 0.091*
C8 0.4562 (4) 0.08877 (15) 0.12662 (12) 0.0847 (12)
H8A 0.5136 0.0681 0.1129 0.102*
C9 0.4635 (4) 0.09263 (15) 0.16849 (12) 0.0799 (11)
H9A 0.5243 0.0740 0.1823 0.096*
C10 0.3830 (3) 0.12339 (12) 0.18996 (10) 0.0623 (8)
H10A 0.3883 0.1265 0.2181 0.075*
C11 0.2936 (3) 0.14950 (11) 0.16799 (9) 0.0536 (7)
C12 0.1969 (2) 0.18421 (11) 0.18043 (8) 0.0473 (6)
C13 0.0820 (2) 0.22489 (10) 0.22928 (8) 0.0433 (6)
C14 0.0520 (2) 0.23430 (10) 0.27105 (8) 0.0447 (6)
C15 0.1064 (3) 0.21848 (12) 0.30650 (8) 0.0540 (7)
H15 0.1773 0.1978 0.3065 0.065*
C16 0.0525 (3) 0.23430 (13) 0.34196 (9) 0.0597 (8)
H16 0.0867 0.2238 0.3666 0.072*
C17 0.1460 (3) 0.33683 (12) 0.12375 (9) 0.0561 (7)
C18 0.2136 (3) 0.32242 (15) 0.09020 (9) 0.0658 (9)
H18A 0.2303 0.2871 0.0854 0.079*
C19 0.2570 (4) 0.3601 (2) 0.06368 (12) 0.0995 (15)
H19A 0.3009 0.3505 0.0405 0.119*
C20 0.2341 (5) 0.4119 (2) 0.07211 (19) 0.123 (2)
H20A 0.2588 0.4378 0.0538 0.147*
C21 0.1763 (5) 0.42528 (19) 0.10666 (19) 0.126 (2)
H21A 0.1681 0.4607 0.1130 0.151*
C22 0.1292 (4) 0.38908 (15) 0.13276 (15) 0.0906 (13)
C23 0.0718 (5) 0.40626 (17) 0.17334 (18) 0.128 (2)
H23A 0.0410 0.3745 0.1867 0.154*
C24 0.1738 (8) 0.4300 (3) 0.20158 (18) 0.179 (3)
H24A 0.2376 0.4044 0.2059 0.269*
H24B 0.1377 0.4395 0.2272 0.269*
H24C 0.2085 0.4606 0.1890 0.269*
C25 −0.0369 (6) 0.4412 (2) 0.1666 (3) 0.181 (4)
H25A −0.0956 0.4249 0.1482 0.218*
H25B −0.0110 0.4745 0.1551 0.218*
C26 −0.0956 (8) 0.4494 (3) 0.2095 (3) 0.226 (4)
H26A −0.1689 0.4704 0.2070 0.339*
H26B −0.0374 0.4668 0.2269 0.339*
H26C −0.1168 0.4159 0.2210 0.339*

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0459 (6) 0.0491 (6) 0.0323 (5) 0.0052 (4) 0.000 0.000
O1 0.0573 (12) 0.0531 (11) 0.0402 (11) −0.0034 (9) −0.0045 (8) 0.0066 (8)
N1 0.0552 (19) 0.0534 (18) 0.0344 (16) 0.0052 (14) 0.000 0.000
N2 0.0658 (15) 0.0622 (14) 0.0390 (13) 0.0115 (12) 0.0092 (11) 0.0023 (11)
N3 0.0516 (13) 0.0526 (13) 0.0366 (12) 0.0080 (10) 0.0062 (10) 0.0035 (9)
N4 0.0455 (12) 0.0558 (13) 0.0387 (12) 0.0043 (10) 0.0028 (10) 0.0038 (9)
N5 0.0434 (16) 0.0514 (17) 0.0295 (15) 0.0019 (13) 0.000 0.000
C1 0.066 (2) 0.097 (2) 0.0342 (15) 0.0023 (16) 0.0047 (14) −0.0033 (15)
C2 0.0594 (18) 0.080 (2) 0.0410 (16) 0.0041 (15) 0.0065 (14) −0.0070 (14)
C3 0.0555 (16) 0.0632 (17) 0.0395 (15) −0.0014 (13) −0.0014 (13) −0.0007 (12)
C4 0.0522 (15) 0.0568 (16) 0.0363 (14) 0.0049 (13) 0.0058 (12) −0.0003 (11)
C5 0.0628 (18) 0.0565 (16) 0.0411 (16) 0.0103 (14) 0.0108 (13) 0.0017 (12)
C6 0.0665 (19) 0.0603 (17) 0.0490 (17) 0.0188 (14) 0.0146 (14) 0.0095 (13)
C7 0.091 (3) 0.077 (2) 0.059 (2) 0.032 (2) 0.0247 (18) 0.0101 (17)
C8 0.088 (3) 0.080 (2) 0.086 (3) 0.039 (2) 0.024 (2) 0.016 (2)
C9 0.075 (2) 0.080 (2) 0.084 (3) 0.034 (2) 0.007 (2) 0.0160 (19)
C10 0.0606 (18) 0.0678 (19) 0.0586 (18) 0.0153 (15) 0.0047 (15) 0.0135 (15)
C11 0.0535 (16) 0.0553 (16) 0.0518 (18) 0.0100 (13) 0.0095 (13) 0.0102 (13)
C12 0.0447 (14) 0.0535 (15) 0.0437 (15) 0.0061 (12) 0.0029 (12) 0.0086 (12)
C13 0.0395 (13) 0.0524 (14) 0.0379 (14) −0.0013 (11) −0.0006 (11) 0.0006 (11)
C14 0.0406 (13) 0.0557 (15) 0.0379 (14) −0.0030 (11) 0.0018 (11) 0.0012 (11)
C15 0.0486 (15) 0.0730 (19) 0.0403 (15) 0.0000 (13) −0.0051 (13) 0.0035 (13)
C16 0.0605 (18) 0.082 (2) 0.0365 (14) −0.0010 (15) −0.0072 (14) 0.0028 (14)
C17 0.0517 (16) 0.0635 (18) 0.0530 (17) −0.0010 (13) 0.0000 (14) 0.0167 (14)
C18 0.0513 (17) 0.098 (2) 0.0487 (18) −0.0062 (16) −0.0014 (14) 0.0108 (17)
C19 0.072 (2) 0.159 (5) 0.068 (3) −0.022 (3) 0.008 (2) 0.037 (3)
C20 0.117 (4) 0.122 (4) 0.129 (4) −0.012 (3) 0.013 (3) 0.076 (4)
C21 0.127 (4) 0.085 (3) 0.164 (5) 0.008 (3) 0.054 (4) 0.058 (3)
C22 0.092 (3) 0.059 (2) 0.120 (3) 0.000 (2) 0.033 (2) 0.022 (2)
C23 0.155 (5) 0.059 (2) 0.171 (5) −0.016 (3) 0.082 (4) −0.007 (3)
C24 0.259 (8) 0.144 (5) 0.135 (5) −0.085 (6) 0.066 (5) −0.030 (4)
C25 0.143 (5) 0.085 (3) 0.316 (9) −0.011 (4) 0.099 (6) −0.056 (5)
C26 0.183 (7) 0.172 (7) 0.324 (11) 0.024 (6) 0.067 (8) −0.090 (8)

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon. Geometric parameters (Å, º)

Si1—O1 1.7236 (19) C10—C11 1.391 (4)
Si1—O1i 1.7237 (19) C10—H10A 0.9400
Si1—N1 1.900 (3) C11—C12 1.444 (4)
Si1—N5 1.904 (3) C13—C14 1.446 (4)
Si1—N3 1.913 (2) C14—C15 1.380 (4)
Si1—N3i 1.913 (2) C14—C14i 1.394 (5)
O1—C17 1.372 (3) C15—C16 1.378 (4)
N1—C4i 1.384 (3) C15—H15 0.9400
N1—C4 1.384 (3) C16—C16i 1.403 (6)
N2—C5 1.315 (4) C16—H16 0.9400
N2—C4 1.324 (4) C17—C18 1.387 (4)
N3—C5 1.378 (3) C17—C22 1.390 (5)
N3—C12 1.386 (3) C18—C19 1.392 (5)
N4—C12 1.314 (4) C18—H18A 0.9400
N4—C13 1.323 (3) C19—C20 1.385 (8)
N5—C13i 1.376 (3) C19—H19A 0.9400
N5—C13 1.376 (3) C20—C21 1.354 (7)
C1—C2 1.368 (4) C20—H20A 0.9400
C1—C1i 1.408 (7) C21—C22 1.372 (6)
C1—H1 0.9400 C21—H21A 0.9400
C2—C3 1.394 (4) C22—C23 1.550 (7)
C2—H2 0.9400 C23—C25 1.506 (9)
C3—C3i 1.383 (6) C23—C24 1.578 (7)
C3—C4 1.440 (4) C23—H23A 0.9900
C5—C6 1.445 (4) C24—H24A 0.9700
C6—C11 1.386 (4) C24—H24B 0.9700
C6—C7 1.401 (4) C24—H24C 0.9700
C7—C8 1.375 (5) C25—C26 1.577 (7)
C7—H7A 0.9400 C25—H25A 0.9800
C8—C9 1.396 (6) C25—H25B 0.9800
C8—H8A 0.9400 C26—H26A 0.9700
C9—C10 1.381 (5) C26—H26B 0.9700
C9—H9A 0.9400 C26—H26C 0.9700
O1—Si1—O1i 173.03 (13) C10—C11—C12 131.4 (3)
O1—Si1—N1 93.48 (7) N4—C12—N3 127.5 (2)
O1i—Si1—N1 93.49 (7) N4—C12—C11 122.6 (2)
O1—Si1—N5 86.52 (7) N3—C12—C11 109.8 (2)
O1i—Si1—N5 86.51 (7) N4—C13—N5 127.6 (2)
N1—Si1—N5 180.0 N4—C13—C14 122.2 (2)
O1—Si1—N3 89.42 (10) N5—C13—C14 110.3 (2)
O1i—Si1—N3 90.61 (10) C15—C14—C14i 121.46 (17)
N1—Si1—N3 89.79 (7) C15—C14—C13 132.2 (3)
N5—Si1—N3 90.21 (7) C14i—C14—C13 106.38 (15)
O1—Si1—N3i 90.61 (10) C16—C15—C14 117.2 (3)
O1i—Si1—N3i 89.42 (10) C16—C15—H15 121.4
N1—Si1—N3i 89.79 (7) C14—C15—H15 121.4
N5—Si1—N3i 90.21 (7) C15—C16—C16i 121.30 (18)
N3—Si1—N3i 179.58 (14) C15—C16—H16 119.3
C17—O1—Si1 134.08 (18) C16i—C16—H16 119.3
C4i—N1—C4 106.7 (3) O1—C17—C18 120.7 (3)
C4i—N1—Si1 126.66 (15) O1—C17—C22 118.9 (3)
C4—N1—Si1 126.66 (15) C18—C17—C22 120.1 (3)
C5—N2—C4 121.6 (2) C17—C18—C19 120.2 (4)
C5—N3—C12 106.8 (2) C17—C18—H18A 119.9
C5—N3—Si1 127.05 (19) C19—C18—H18A 119.9
C12—N3—Si1 126.11 (18) C20—C19—C18 118.7 (4)
C12—N4—C13 121.6 (2) C20—C19—H19A 120.6
C13i—N5—C13 106.7 (3) C18—C19—H19A 120.6
C13i—N5—Si1 126.63 (14) C21—C20—C19 120.0 (4)
C13—N5—Si1 126.63 (14) C21—C20—H20A 120.0
C2—C1—C1i 121.19 (19) C19—C20—H20A 120.0
C2—C1—H1 119.4 C20—C21—C22 122.5 (5)
C1i—C1—H1 119.4 C20—C21—H21A 118.8
C1—C2—C3 117.7 (3) C22—C21—H21A 118.8
C1—C2—H2 121.2 C21—C22—C17 118.1 (4)
C3—C2—H2 121.2 C21—C22—C23 120.5 (4)
C3i—C3—C2 121.13 (18) C17—C22—C23 121.1 (3)
C3i—C3—C4 106.89 (16) C25—C23—C22 111.1 (5)
C2—C3—C4 132.0 (3) C25—C23—C24 114.5 (5)
N2—C4—N1 127.4 (2) C22—C23—C24 109.9 (4)
N2—C4—C3 122.6 (2) C25—C23—H23A 107.0
N1—C4—C3 109.8 (2) C22—C23—H23A 107.0
N2—C5—N3 127.1 (3) C24—C23—H23A 107.0
N2—C5—C6 123.0 (3) C23—C24—H24A 109.5
N3—C5—C6 109.8 (2) C23—C24—H24B 109.5
C11—C6—C7 120.9 (3) H24A—C24—H24B 109.5
C11—C6—C5 106.9 (2) C23—C24—H24C 109.5
C7—C6—C5 132.2 (3) H24A—C24—H24C 109.5
C8—C7—C6 116.9 (3) H24B—C24—H24C 109.5
C8—C7—H7A 121.5 C23—C25—C26 105.4 (6)
C6—C7—H7A 121.5 C23—C25—H25A 110.7
C7—C8—C9 122.0 (3) C26—C25—H25A 110.7
C7—C8—H8A 119.0 C23—C25—H25B 110.7
C9—C8—H8A 119.0 C26—C25—H25B 110.7
C10—C9—C8 121.3 (3) H25A—C25—H25B 108.8
C10—C9—H9A 119.4 C25—C26—H26A 109.5
C8—C9—H9A 119.4 C25—C26—H26B 109.5
C9—C10—C11 116.9 (3) H26A—C26—H26B 109.5
C9—C10—H10A 121.6 C25—C26—H26C 109.5
C11—C10—H10A 121.6 H26A—C26—H26C 109.5
C6—C11—C10 122.0 (3) H26B—C26—H26C 109.5
C6—C11—C12 106.6 (2)

Symmetry code: (i) −x, −y+1/2, z.

References

  1. Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.
  2. Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cnops, K., Rand, B. P., Cheyns, D., Verreet, B., Empl, M. & Heremans, P. (2014). Nat. Commun. 5, 3406. [DOI] [PubMed]
  4. Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977. [DOI] [PubMed]
  5. Lessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040–15051. [DOI] [PubMed]
  6. Eftaiha, A. F., Sun, J.-P., Hill, I. G. & Welch, G. C. (2014). J. Mater. Chem. A, 2, 1201–1213.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Honda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. (2009). Appl. Mater. Interfaces, 1, 804–810. [DOI] [PubMed]
  9. Honda, S., Ohkita, H., Benten, H. & Ito, S. (2011). Adv. Energ. Mater. 1, 588–598.
  10. Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512–24524.
  11. Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076–5088. [DOI] [PubMed]
  12. Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N. M., Subramaniyan, S., Crane, M. J., Seki, S. & Jenekhe, S. (2014). J. Am. Chem. Soc. 136, 14589–14597. [DOI] [PubMed]
  13. Lowery, M. K., Starshak, A. J., Esposito, J. N., Krueger, P. C. & Kenney, M. E. (1965). Inorg. Chem. 4, 128.
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  15. Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86. [DOI] [PubMed]
  16. Paton, A. S., Lough, A. J. & Bender, T. P. (2012). Ind. Eng. Chem. Res. 51, 6290–6296.
  17. Rozycka-Sokolowska, E., Marciniak, B., Kosik, S., Dondela, B. & Bak, Z. (2015). Struct. Chem. 26, 873–886.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Spek, A. L. (2015). Acta Cryst C71, 9–18. [DOI] [PubMed]
  23. Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27. [DOI] [PubMed]
  24. Virdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). CrystEngComm, 15, 3187–3199.
  25. Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S., Liu, Y., Shi, Q., Liu, Y. & Yao, J. (2013). Adv. Mater. 25, 5791–5797. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 3MP2-SiPc, 3IP2-SiPc, 2secBP2-SiPc. DOI: 10.1107/S205698901600935X/hb7581sup1.cif

e-72-00988-sup1.cif (984KB, cif)

Structure factors: contains datablock(s) 3MP2-SiPc. DOI: 10.1107/S205698901600935X/hb75813MP2-SiPcsup3.hkl

Structure factors: contains datablock(s) 3IP2-SiPc. DOI: 10.1107/S205698901600935X/hb75813IP2-SiPcsup2.hkl

Structure factors: contains datablock(s) 2secBP2-SiPc. DOI: 10.1107/S205698901600935X/hb75812secBP2-SiPcsup4.hkl

Supporting information file. DOI: 10.1107/S205698901600935X/hb7581sup5.pdf

e-72-00988-sup5.pdf (787.2KB, pdf)

Supporting information file. DOI: 10.1107/S205698901600935X/hb7581sup6.tif

Supporting information file. DOI: 10.1107/S205698901600935X/hb7581sup7.tif

CCDC references: 1484189, 1484188, 1484187

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES