Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 24;72(Pt 7):1037–1042. doi: 10.1107/S2056989016010033

Structural characterization of two benzene-1,2-di­amine complexes of zinc chloride: a mol­ecular compound and a co-crystal salt

Patricia L Zick a, David K Geiger a,*
PMCID: PMC4992933  PMID: 27555958

The structures of two zinc complexes containing bidentate benzene-1,2-di­amine ligands are reported. (Benzene-1,2-di­amine-κ2 N,N′)di­chloro­idozinc displays a distorted tetra­hedral geometry. The 1:1 co-crystal salt trans-di­aqua­bis­(4,5-di­methyl­benzene-1,2-di­amine- κ2 N,N′)zinc chloride 4,5-di­methyl­benzene-1,2-di­amine exhibits a tetra­gonally distorted octa­hedral zinc coordination sphere.

Keywords: crystal structure; benzene-1,2-di­amine; zinc chloride; co-crystal salt

Abstract

The structures of two zinc complexes containing bidentate benzene-1,2-di­amine ligands are reported. (Benzene-1,2-di­amine-κ2 N,N′)di­chloro­idozinc, [ZnCl2(C6H8N2)], (I), displays a distorted tetra­hedral coordination sphere for the metal cation. The di­amine ligand and the Zn atom reside on a crystallographic mirror plane. In the 1:1 co-crystal salt trans-di­aqua­bis­(4,5-di­methyl­benzene-1,2-di­amine-κ2 N,N′)zinc chloride–4,5-di­methyl­benzene-1,2-di­amine (1/1), [Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2, (II), the zinc(II) complex cation exhibits a tetra­gonally distorted octa­hedral coordination sphere. The Zn atom sits on a crystallographically imposed inversion center and the di­amine ligands are tilted 30.63 (6)° with respect to the ZnN4 plane. Both complexes exhibit extensive hydrogen bonding. In (I), a stacked-sheet extended structure parallel to (101) is observed. In (II), the co-crystallized di­amine is hydrogen-bonded to the complex cation via O—H⋯N and N—H⋯N linkages. These units are in turn linked into planes along (200) by O—H⋯Cl and N—H⋯Cl hydrogen bonds.

Chemical context  

Zinc complexes bearing aryl di­imine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum (DeStefano & Geiger, 2016; Tan et al., 2012; Liu et al., 2010; Xu et al., 2008; Yue et al., 2006; Singh et al., 2011; Wang et al., 2010). These complexes have potential use in photooptical devices because of their high thermal stability and the ability to tune their color by varying ancillary ligands and coordination geometry (Xu et al., 2008). Most of the compounds explored have acetate ligands. Substituting acetate with halide ligands provides an avenue for modulating the electronic structure of the complex and, hence, the carrier transport character. Toward that end, we have characterized several zinc complexes possessing benzene-1,2-di­amine ligands (Geiger, 2012; Geiger & Parsons, 2014) and substituted benzimidazole ligands (DeStefano & Geiger, 2016). The benzene-1,2-di­amine-containing complexes previously reported have a monodentate di­amine coordination mode. We report herein two new zinc complexes containing bidentate benzene-1,2-di­amine ligands: (benzene-1,2-di­amine-κ2 N,N′)di­chlor­idozinc, (I), and the 1:1 co-crystal salt trans-di­aqua­bis­(4,5-di­methyl­benzene-1,2-di­amine-κ2 N,N′)zinc chloride 4,5-di­methyl­benzene-1,2-di­amine, (II).graphic file with name e-72-01037-scheme1.jpg graphic file with name e-72-01037-scheme2.jpg

Structural commentary  

As seen in Fig. 1, compound (I) exhibits a distorted tetra­hedral coordination sphere for the metal cation. Tables 1 and 2 give relevant geometric parameters found in the coordination sphere. The di­amine ligand and the Zn atom sit on a mirror plane and, hence, are rigorously planar as a result of the symmetry constraint. The Zn—N bond lengths observed at the two temperatures are the same within the calculated s.u.s. The Zn—Cl bond lengths differ within the s.u.s, with the 200 K structure being 0.0030 (5) Å longer. The bond lengths observed at both temperatures fall within the s.u. of the average value [2.221 (19) Å] of similar complexes but the Cl—Zn—Cl bond angles are smaller than the average of the values [115 (1)°] reported for similar ZnII dichlorides in a tetra­hedral environment (Shi et al., 2010; You, 2005; Lee et al., 2007).

Figure 1.

Figure 1

The mol­ecular structure of (Ia), showing the atom-labeling scheme. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry code: (a) x, −y + Inline graphic, z.]

Table 1. Selected geometric parameters (Å, °) for (Ia) .

Zn1—Cl1 2.2271 (5) Zn1—N2 2.0454 (18)
Zn1—N1 2.0449 (19)    
       
Cl1—Zn1—Cl1i 110.82 (2) N1—Zn1—Cl1 113.82 (3)
N1—Zn1—N2 85.53 (8) N2—Zn1—Cl1 115.42 (3)

Symmetry code: (i) Inline graphic.

Table 2. Selected geometric parameters (Å, °) for (Ib) .

Zn1—Cl1 2.2301 (5) Zn1—N2 2.045 (3)
Zn1—N1 2.047 (2)    
       
Cl1—Zn1—Cl1i 110.70 (3) N1—Zn1—Cl1 113.89 (4)
N1—Zn1—N2 85.45 (10) N2—Zn1—Cl1 115.46 (3)

Symmetry code: (i) Inline graphic.

Compound (II) consists of a ZnII complex cation with two bidentate 4,5-di­methyl­benzene-1,2-di­amine ligands and trans water ligands, chloride counter-ions and a non-coordinating mol­ecule of 4,5-di­methyl­benzene-1,2-di­amine. The compound is thus classified as a co-crystal salt (Grothe et al., 2016). A representation of (II) is found in Fig. 2. The ZnII ion sits on a crystallographically imposed center of symmetry and has a tetra­gonally distorted octa­hedral coordination geometry. The observed Zn—O bond length (Table 3) is significantly longer than the average of the values [2.14 (3) Å] reported for similar trans aqua zinc(II) complexes (Necefoglu et al., 2001; İbrahim et al., 2006; Karimnejad et al., 2011; Gallardo et al., 2008; Li et al., 2012) and the range [2.008 (3) to 2.147 (3) Å] found in the hexa­aqua­zinc(II) cation (Lian et al., 2009). However, it is close to the 2.2057 (16) Å found in the similar cation of trans-di­aqua­bis­(cyclo­hexane-1,2-di­amine)­zinc dichloride (Karimnejad et al., 2011). The plane of the 4,5-di­methyl­benzene-1,2-di­amine ligand is canted 30.63 (6) Å out of the ZnN4 coordin­ation plane. The nitro­gen atoms of the di­amine ligand are 0.022 (3) and 0.131 (3) Å out of the benzene plane for N1 and N2, respectively. For the co-crystallized di­amine, N3 and N4 are 0.139 (3) and 0.088 (3) Å out of the plane, respectively.

Figure 2.

Figure 2

The mol­ecular structure of (II) showing the atom-labeling scheme. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry code: (a) −x + 1, −y + 1, −z + 1.]

Table 3. Selected geometric parameters (Å, °) for (II) .

Zn1—N1 2.1214 (15) Zn1—O1 2.2410 (15)
Zn1—N2 2.1442 (17)    
       
N1i—Zn1—N2 100.31 (6) N1—Zn1—O1 92.18 (7)
N1—Zn1—N2 79.69 (6) N2—Zn1—O1 93.22 (7)

Symmetry code: (i) Inline graphic.

Supra­molecular features  

As seen in Figs. 3 and 4 and Tables 4 and 5, N1—H1⋯Cl hydrogen bonds between adjacent mol­ecules result in strips of mol­ecules of (I) along [100]. The strips form planes parallel to (101). Additional N2—H2⋯Cl bonds join the strips to form the three-dimensional network.

Figure 3.

Figure 3

A view of the parallel sheets found in (I). Only H atoms involved in the N—H⋯Cl inter­actions are shown. [Symmetry codes: (a) x, −y + Inline graphic, z; (b) x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (c) −x, −y + 1, −z + 1.]

Figure 4.

Figure 4

A view of the parallel sheets found in (I). Only H atoms involved in the N—H⋯Cl inter­actions are shown. [Symmetry codes: (a) x, −y + Inline graphic, z; (b) x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (d) x + Inline graphic, y, −z + Inline graphic; (e) x − Inline graphic, −y + Inline graphic, −z + Inline graphic.]

Table 4. Hydrogen-bond geometry (Å, °) for (Ia) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1ii 0.86 (2) 2.59 (2) 3.3618 (16) 150.7 (18)
N2—H2⋯Cl1iii 0.85 (2) 2.52 (2) 3.3204 (16) 157 (2)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Table 5. Hydrogen-bond geometry (Å, °) for (Ib) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1ii 0.83 (3) 2.61 (3) 3.368 (2) 152 (2)
N2—H2⋯Cl1iii 0.83 (3) 2.53 (3) 3.327 (2) 160 (2)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Fig. 5 presents a view of the hydrogen-bonding network in (II). N—H⋯N and O—H⋯N hydrogen bonds connect inversion-related co-crystallized 4,5-di­methyl­benzene-1,2-di­amine mol­ecules to the complex cation (see Table 6). Additional N—H⋯Cl and O—H⋯Cl hydrogen bonds join the units, forming planes parallel to (200).

Figure 5.

Figure 5

A view of the hydrogen-bonded network of (II) resulting in slabs along (200). Only H atoms bonded to the nitro­gen atoms are shown. [Symmetry codes: (a) −x + 1, −y + 1, −z + 1; (b) −x + 1, y + Inline graphic, −z + Inline graphic; (c) −x + 1, y − Inline graphic, −z + Inline graphic; (d) −x + 1, −y + 1, −z + 2.]

Table 6. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1WA⋯N4ii 0.81 (3) 2.13 (3) 2.924 (3) 164 (2)
O1—H1WB⋯Cl1iii 0.80 (3) 2.31 (3) 3.1083 (17) 173 (2)
N1—H1A⋯Cl1iii 0.84 (2) 2.55 (2) 3.3551 (18) 160.3 (18)
N1—H1B⋯N3iv 0.85 (2) 2.31 (2) 3.137 (3) 162.6 (18)
N2—H2A⋯Cl1v 0.87 (2) 2.63 (2) 3.4401 (19) 155.3 (18)
N2—H2B⋯Cl1i 0.81 (2) 2.57 (2) 3.3105 (18) 154 (2)
N3—H3A⋯Cl1v 0.84 (3) 2.68 (3) 3.516 (2) 174 (2)
N3—H3B⋯Cl1vi 0.87 (3) 2.89 (2) 3.3284 (19) 112.9 (18)
N4—H4B⋯Cl1v 0.87 (3) 2.50 (3) 3.355 (2) 171 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Database survey  

The structures of the tetra­hedral complexes bis­(acetato-κO)(benzene-1,2-di­amine-κN)zinc (Mei et al., 2009) and bis(acetato-κO)(4,5-di­methyl­benzene-1,2-di­amine-κN)zinc (Geiger, 2012) have been reported. Poly[[tris­(μ 2-acetato-κ2 O:O′)(4-chloro­benzene-1,2-di­amine-κN)(μ 3-hydroxido)dizinc] ethanol monosolvate] exhibits alternating octa­hedral and tetra­hedral zinc coordination modes (Geiger & Parsons, 2014). Di­chlorido­[N-(2-pyridyl­methyl­idene)benzene-1,4-di­amine]­zinc has a tetra­hedral coordination sphere with inter­molecular N—H⋯Cl hydrogen bonds (Shi et al., 2010). Di­chlorido­[N,N,N′,N′-tetra­methyl­cyclo­hexane-1,2-di­amine-κ2 N,N′]zinc displays a tetra­hedral coordination geometry (Lee et al., 2007). For examples of zinc complexes with the metal in octahedral coordination including trans water ligands, see İbrahim et al. (2006); Necefoglu et al. (2001); Karimnejad et al. (2011). A tetra­gonally distorted octa­hedral zinc complex that contains both a mono- and a bidentate benzene-1,2-di­amine ligand (Qian et al., 2007) and a distorted octa­hedral complex with trans monodentate benzene-1,2-di­amine ligands (Ovalle-Marroquín et al., 2002) have been reported.

Synthesis and crystallization  

Compound (I) was prepared by mixing a solution of 100. mg (0.734 mmol) zinc chloride dissolved in approximately 5 mL ethanol with a solution of 238 mg (2.20 mmol) benzene-1,2-di­amine dissolved in approximately 5 mL ethanol. The mixture became cloudy with a fine white precipitate. After the addition of 4 drops of 6 M HCl, the mixture was gently heated, filtered and allowed to slowly evaporate. After two days, 0.0273 g (0.117 mmol, 15% yield) of clear, colorless crystals were isolated, which were used for data collection. The diffraction pattern showed signs of degradation as the temperature was lowered to 200 K from 300 K and so data sets were collected at both temperatures.

Compound (II) was prepared by combining solutions of 100 mg (0.734 mmole) zinc chloride in a few mL of ethanol and 300 mg (2.20 mmol) 4,5-di­methyl­benzene-1,2-di­amine in a few mL of ethanol. After the addition of 4 drops of 6 M HCl, the mixture was gently heated and filtered. The filtrate was divided into three portions and each allowed to slowly evaporate. After several days, a small number of clear, colorless crystals in the shape of hexa­gonal plates were isolated, one of which was used for data collection.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 7. For compound (I), data sets were collected at 300 K (Ia) and 200 K (Ib). The diffraction pattern showed clear degradation at the lower temperature. Examination of the crystal subjected to the cold stream showed fractures that were not previously present. As seen in Table 7, the cell constant s.u.s, R values and S values are lower for the 300 K data set.

Table 7. Experimental details.

  (Ia) (Ib) (II)
Crystal data
Chemical formula [ZnCl2(C6H8N2)] [ZnCl2(C6H8N2)] [Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2
M r 244.41 244.41 717.08
Crystal system, space group Orthorhombic, P n m a Orthorhombic, P n m a Monoclinic, P21/c
Temperature (K) 300 200 200
a, b, c (Å) 8.4039 (9), 7.5206 (7), 14.1667 (15) 8.4152 (12), 7.5141 (9), 14.199 (2) 18.529 (2), 12.6227 (16), 7.8691 (8)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 94.665 (4), 90
V3) 895.37 (16) 897.8 (2) 1834.4 (4)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.27 3.27 0.86
Crystal size (mm) 0.60 × 0.30 × 0.20 0.60 × 0.30 × 0.20 0.60 × 0.40 × 0.10
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.39, 0.56 0.40, 0.56 0.66, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 9435, 1129, 1026 4392, 1090, 992 25430, 3619, 2920
R int 0.039 0.040 0.060
(sin θ/λ)max−1) 0.658 0.649 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.020, 0.051, 1.09 0.027, 0.074, 1.16 0.031, 0.079, 1.05
No. of reflections 1129 1090 3619
No. of parameters 72 72 245
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.40 0.41, −0.58 0.31, −0.22

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

For both (I) and (II), all hydrogen atoms were located in difference Fourier maps. For (I), all hydrogen atoms bonded to the nitro­gen atoms were refined freely, including isotropic displacement parameters. For (Ia), the hydrogen atoms bonded to the benzene carbon atoms were refined using a riding model with C—H = 0.93 Å and U iso(H) = 1.2U eq(C), whereas these hydrogen atoms were refined with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for (Ib).

For (II), the amine hydrogen atoms of the non-coordinating 4,5-di­methyl­benzene-1,2-di­amine were refined freely, including the isotropic displacement parameters. For the hydrogen atoms of the coordinating amines, the atomic coord­inates were refined freely with U iso(H) = 1.2U eq(N). The hydrogen atoms of the water ligands were refined freely, including the isotropic displacement parameters. The methyl hydrogen atoms were refined with C—H = 0.98 Å and U iso(H) = 1.5U eq(C).

Supplementary Material

Crystal structure: contains datablock(s) global, Ia, II, Ib. DOI: 10.1107/S2056989016010033/lh5817sup1.cif

e-72-01037-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) Ia. DOI: 10.1107/S2056989016010033/lh5817Iasup2.hkl

e-72-01037-Iasup2.hkl (92.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016010033/lh5817Iasup5.mol

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016010033/lh5817IIsup3.hkl

e-72-01037-IIsup3.hkl (288.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016010033/lh5817IIsup7.mol

Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989016010033/lh5817Ibsup4.hkl

e-72-01037-Ibsup4.hkl (89.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016010033/lh5817Ibsup6.mol

CCDC references: 1486732, 1486731, 1486730

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Congressionally-directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

supplementary crystallographic information

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Crystal data

[ZnCl2(C6H8N2)] Dx = 1.813 Mg m3
Mr = 244.41 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 6300 reflections
a = 8.4039 (9) Å θ = 2.8–29.2°
b = 7.5206 (7) Å µ = 3.27 mm1
c = 14.1667 (15) Å T = 300 K
V = 895.37 (16) Å3 Parallelpiped, colorless
Z = 4 0.60 × 0.30 × 0.20 mm
F(000) = 488

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Data collection

Bruker SMART X2S benchtop diffractometer 1129 independent reflections
Radiation source: sealed microfocus tube 1026 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromator Rint = 0.039
Detector resolution: 8.3330 pixels mm-1 θmax = 27.9°, θmin = 2.8°
/w scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −9→8
Tmin = 0.39, Tmax = 0.56 l = −18→15
9435 measured reflections

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: mixed
wR(F2) = 0.051 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.2253P] where P = (Fo2 + 2Fc2)/3
1129 reflections (Δ/σ)max = 0.001
72 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.40 e Å3

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.12910 (3) 0.75 0.38035 (2) 0.03301 (10)
N1 0.3667 (2) 0.75 0.34928 (13) 0.0359 (5)
H1 0.393 (2) 0.656 (3) 0.3182 (15) 0.050 (6)*
N2 0.1999 (2) 0.75 0.51849 (13) 0.0362 (5)
H2 0.162 (3) 0.660 (3) 0.5468 (16) 0.057 (6)*
Cl1 0.00181 (5) 0.50621 (6) 0.33277 (3) 0.04250 (13)
C1 0.4560 (3) 0.75 0.43712 (14) 0.0301 (4)
C2 0.3724 (2) 0.75 0.52146 (14) 0.0293 (4)
C3 0.4541 (3) 0.75 0.60645 (15) 0.0406 (5)
H3 0.3982 0.75 0.6631 0.049*
C4 0.6191 (3) 0.75 0.60699 (19) 0.0496 (7)
H4 0.6742 0.75 0.6639 0.059*
C5 0.7007 (3) 0.75 0.5231 (2) 0.0508 (7)
H5 0.8114 0.75 0.5236 0.061*
C6 0.6208 (3) 0.75 0.43830 (19) 0.0434 (6)
H6 0.6774 0.75 0.3819 0.052*

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.03143 (15) 0.04349 (19) 0.02409 (14) 0 −0.00277 (9) 0
N1 0.0353 (10) 0.0523 (14) 0.0200 (8) 0 0.0028 (7) 0
N2 0.0357 (10) 0.0506 (14) 0.0223 (8) 0 0.0037 (7) 0
Cl1 0.0528 (3) 0.0391 (3) 0.0355 (2) −0.00706 (18) −0.00622 (16) 0.00356 (16)
C1 0.0339 (11) 0.0307 (12) 0.0258 (9) 0 0.0001 (8) 0
C2 0.0342 (11) 0.0308 (12) 0.0228 (9) 0 −0.0010 (7) 0
C3 0.0499 (14) 0.0474 (15) 0.0244 (10) 0 −0.0057 (9) 0
C4 0.0485 (15) 0.0559 (18) 0.0443 (14) 0 −0.0201 (11) 0
C5 0.0354 (13) 0.0582 (18) 0.0587 (15) 0 −0.0093 (11) 0
C6 0.0332 (12) 0.0541 (17) 0.0429 (13) 0 0.0041 (9) 0

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Geometric parameters (Å, º)

Zn1—Cl1i 2.2271 (5) C5—C6 1.377 (4)
Zn1—Cl1 2.2271 (5) C5—H5 0.93
Zn1—N1 2.0449 (19) C4—C5 1.372 (4)
Zn1—N2 2.0454 (18) C4—H4 0.93
N2—C2 1.451 (3) C3—C4 1.387 (4)
N2—H2 0.85 (2) C3—H3 0.93
N1—C1 1.453 (3) C2—C3 1.386 (3)
N1—H1 0.86 (2) C1—C2 1.386 (3)
C6—H6 0.93 C1—C6 1.385 (3)
Cl1—Zn1—Cl1i 110.82 (2) C4—C5—C6 120.8 (2)
N1—Zn1—N2 85.53 (8) C6—C5—H5 119.6
N1—Zn1—Cl1 113.82 (3) C4—C5—H5 119.6
N2—Zn1—Cl1 115.42 (3) C5—C4—C3 119.7 (2)
N2—Zn1—Cl1i 115.42 (3) C5—C4—H4 120.2
N1—Zn1—Cl1i 113.82 (3) C3—C4—H4 120.2
Zn1—N2—H2 110.1 (15) C2—C3—C4 120.0 (2)
C2—N2—H2 111.3 (15) C4—C3—H3 120.0
C2—N2—Zn1 108.56 (13) C2—C3—H3 120.0
Zn1—N1—H1 111.1 (14) C3—C2—C1 119.8 (2)
C1—N1—H1 107.8 (14) C3—C2—N2 121.4 (2)
C1—N1—Zn1 108.67 (13) C1—C2—N2 118.81 (18)
C5—C6—C1 119.9 (2) C6—C1—C2 119.8 (2)
C5—C6—H6 120.1 C6—C1—N1 121.79 (19)
C1—C6—H6 120.1 C2—C1—N1 118.43 (19)

Symmetry code: (i) x, −y+3/2, z.

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1ii 0.86 (2) 2.59 (2) 3.3618 (16) 150.7 (18)
N2—H2···Cl1iii 0.85 (2) 2.52 (2) 3.3204 (16) 157 (2)

Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) −x, −y+1, −z+1.

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Crystal data

[Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2 F(000) = 760
Mr = 717.08 Dx = 1.298 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.529 (2) Å Cell parameters from 8719 reflections
b = 12.6227 (16) Å θ = 2.7–25.8°
c = 7.8691 (8) Å µ = 0.86 mm1
β = 94.665 (4)° T = 200 K
V = 1834.4 (4) Å3 Plate, clear colourless
Z = 2 0.60 × 0.40 × 0.10 mm

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Data collection

Bruker SMART X2S benchtop diffractometer 3619 independent reflections
Radiation source: sealed microfocus tube 2920 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromator Rint = 0.060
Detector resolution: 8.3330 pixels mm-1 θmax = 26.0°, θmin = 2.7°
/w scans h = −22→22
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −15→15
Tmin = 0.66, Tmax = 0.92 l = −9→9
25430 measured reflections

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.4174P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3619 reflections Δρmax = 0.31 e Å3
245 parameters Δρmin = −0.22 e Å3

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5 0.5 0.5 0.02953 (11)
Cl1 0.45668 (3) 0.33892 (4) 1.02374 (6) 0.03564 (13)
O1 0.56720 (9) 0.42255 (13) 0.31090 (19) 0.0392 (4)
H1WA 0.6043 (14) 0.447 (2) 0.278 (3) 0.051 (8)*
H1WB 0.5410 (14) 0.403 (2) 0.231 (3) 0.058 (8)*
N1 0.40508 (8) 0.41964 (13) 0.4016 (2) 0.0274 (3)
H1A 0.4163 (11) 0.3837 (17) 0.317 (3) 0.033*
H1B 0.3870 (11) 0.3749 (17) 0.468 (3) 0.033*
N2 0.45593 (9) 0.61470 (14) 0.3192 (2) 0.0322 (4)
H2A 0.4637 (11) 0.6792 (18) 0.355 (3) 0.039*
H2B 0.4755 (12) 0.6043 (17) 0.233 (3) 0.039*
N3 0.67491 (11) 0.80052 (17) 0.8184 (3) 0.0422 (4)
H3A 0.6415 (14) 0.807 (2) 0.741 (3) 0.056 (8)*
H3B 0.6781 (12) 0.736 (2) 0.859 (3) 0.050 (7)*
N4 0.68407 (11) 0.98800 (18) 0.6276 (3) 0.0408 (4)
H4A 0.6917 (13) 1.035 (2) 0.560 (3) 0.058 (8)*
H4B 0.6509 (14) 0.947 (2) 0.579 (3) 0.053 (7)*
C1 0.35297 (10) 0.49852 (14) 0.3405 (2) 0.0261 (4)
C2 0.37896 (10) 0.59711 (15) 0.2950 (2) 0.0280 (4)
C3 0.33004 (11) 0.67499 (16) 0.2373 (2) 0.0356 (5)
H3 0.3479 0.7416 0.2031 0.043*
C4 0.25549 (11) 0.65820 (17) 0.2281 (2) 0.0385 (5)
C5 0.22942 (10) 0.56000 (18) 0.2798 (2) 0.0373 (5)
C6 0.27863 (10) 0.48108 (16) 0.3337 (2) 0.0325 (5)
H6 0.2611 0.414 0.3666 0.039*
C7 0.20454 (14) 0.7463 (2) 0.1635 (3) 0.0584 (7)
H7A 0.2328 0.8085 0.1351 0.088*
H7B 0.1726 0.7651 0.2522 0.088*
H7C 0.1753 0.7221 0.0615 0.088*
C8 0.14910 (12) 0.5376 (2) 0.2831 (3) 0.0575 (7)
H8A 0.1248 0.5496 0.1694 0.086*
H8B 0.1285 0.5849 0.3653 0.086*
H8C 0.1421 0.4638 0.3168 0.086*
C9 0.74336 (10) 0.84050 (16) 0.7842 (2) 0.0337 (4)
C10 0.74828 (10) 0.93442 (16) 0.6917 (2) 0.0330 (4)
C11 0.81603 (12) 0.97694 (17) 0.6739 (3) 0.0389 (5)
H11 0.8193 1.0404 0.61 0.047*
C12 0.87968 (11) 0.93093 (19) 0.7455 (3) 0.0437 (5)
C13 0.87500 (12) 0.83640 (19) 0.8363 (3) 0.0441 (5)
C14 0.80689 (12) 0.79322 (18) 0.8537 (2) 0.0403 (5)
H14 0.8036 0.7289 0.9154 0.048*
C15 0.95146 (14) 0.9844 (2) 0.7237 (4) 0.0706 (8)
H15A 0.9767 0.9977 0.836 0.106*
H15B 0.9429 1.0518 0.6636 0.106*
H15C 0.9812 0.9384 0.6575 0.106*
C16 0.94172 (14) 0.7809 (3) 0.9159 (3) 0.0710 (8)
H16A 0.9745 0.7651 0.8275 0.107*
H16B 0.9275 0.7147 0.9691 0.107*
H16C 0.9664 0.8268 1.0026 0.107*

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02417 (16) 0.03331 (19) 0.03039 (18) −0.00446 (13) −0.00213 (12) −0.00003 (13)
Cl1 0.0358 (3) 0.0413 (3) 0.0299 (3) −0.0041 (2) 0.00360 (19) 0.0004 (2)
O1 0.0308 (8) 0.0510 (10) 0.0362 (9) −0.0069 (7) 0.0048 (7) −0.0091 (7)
N1 0.0275 (8) 0.0270 (9) 0.0280 (9) −0.0030 (7) 0.0028 (7) −0.0012 (7)
N2 0.0310 (9) 0.0344 (9) 0.0318 (9) −0.0076 (7) 0.0061 (7) 0.0018 (8)
N3 0.0411 (11) 0.0428 (12) 0.0436 (11) −0.0114 (9) 0.0094 (9) −0.0012 (9)
N4 0.0359 (10) 0.0443 (12) 0.0422 (11) −0.0001 (9) 0.0027 (8) 0.0053 (10)
C1 0.0261 (9) 0.0311 (10) 0.0209 (9) −0.0002 (8) 0.0004 (7) −0.0021 (8)
C2 0.0287 (9) 0.0329 (10) 0.0225 (9) −0.0024 (8) 0.0019 (7) 0.0002 (8)
C3 0.0435 (11) 0.0314 (11) 0.0318 (11) 0.0007 (9) 0.0024 (9) 0.0035 (8)
C4 0.0401 (11) 0.0471 (13) 0.0279 (10) 0.0131 (10) 0.0005 (8) −0.0020 (9)
C5 0.0279 (10) 0.0544 (14) 0.0297 (10) 0.0019 (9) 0.0020 (8) −0.0012 (9)
C6 0.0273 (10) 0.0400 (12) 0.0301 (10) −0.0055 (8) 0.0024 (8) 0.0004 (8)
C7 0.0582 (15) 0.0603 (17) 0.0559 (15) 0.0239 (13) −0.0010 (12) 0.0009 (12)
C8 0.0301 (12) 0.0844 (19) 0.0582 (15) 0.0066 (12) 0.0043 (11) 0.0051 (13)
C9 0.0359 (11) 0.0376 (12) 0.0288 (10) −0.0068 (9) 0.0093 (8) −0.0070 (9)
C10 0.0354 (11) 0.0364 (11) 0.0276 (10) −0.0011 (9) 0.0060 (8) −0.0047 (8)
C11 0.0405 (12) 0.0393 (12) 0.0379 (11) −0.0076 (9) 0.0089 (9) 0.0030 (9)
C12 0.0342 (11) 0.0583 (15) 0.0394 (12) −0.0083 (10) 0.0071 (9) −0.0055 (11)
C13 0.0389 (12) 0.0572 (15) 0.0361 (11) 0.0042 (11) 0.0025 (9) −0.0024 (10)
C14 0.0493 (13) 0.0380 (12) 0.0342 (11) 0.0031 (10) 0.0069 (9) 0.0025 (9)
C15 0.0383 (14) 0.100 (2) 0.0741 (19) −0.0179 (14) 0.0070 (13) 0.0068 (16)
C16 0.0503 (15) 0.095 (2) 0.0656 (17) 0.0143 (15) −0.0073 (13) 0.0084 (16)

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Geometric parameters (Å, º)

Zn1—N1i 2.1214 (15) C4—C7 1.519 (3)
Zn1—N1 2.1214 (15) C5—C6 1.393 (3)
Zn1—N2 2.1442 (17) C5—C8 1.517 (3)
Zn1—N2i 2.1442 (17) C6—H6 0.95
Zn1—O1i 2.2409 (15) C7—H7A 0.98
Zn1—O1 2.2410 (15) C7—H7B 0.98
O1—H1WA 0.81 (3) C7—H7C 0.98
O1—H1WB 0.80 (3) C8—H8A 0.98
N1—C1 1.442 (2) C8—H8B 0.98
N1—H1A 0.84 (2) C8—H8C 0.98
N1—H1B 0.85 (2) C9—C14 1.391 (3)
N2—C2 1.441 (2) C9—C10 1.398 (3)
N2—H2A 0.87 (2) C10—C11 1.383 (3)
N2—H2B 0.81 (2) C11—C12 1.392 (3)
N3—C9 1.411 (3) C11—H11 0.95
N3—H3A 0.84 (3) C12—C13 1.397 (3)
N3—H3B 0.87 (3) C12—C15 1.514 (3)
N4—C10 1.425 (3) C13—C14 1.392 (3)
N4—H4A 0.81 (3) C13—C16 1.512 (3)
N4—H4B 0.87 (3) C14—H14 0.95
C1—C6 1.392 (2) C15—H15A 0.98
C1—C2 1.392 (3) C15—H15B 0.98
C2—C3 1.388 (3) C15—H15C 0.98
C3—C4 1.393 (3) C16—H16A 0.98
C3—H3 0.95 C16—H16B 0.98
C4—C5 1.403 (3) C16—H16C 0.98
N1i—Zn1—N1 180.0 C6—C5—C4 119.21 (18)
N1i—Zn1—N2 100.31 (6) C6—C5—C8 118.7 (2)
N1—Zn1—N2 79.69 (6) C4—C5—C8 122.1 (2)
N1i—Zn1—N2i 79.69 (6) C1—C6—C5 121.32 (19)
N1—Zn1—N2i 100.31 (6) C1—C6—H6 119.3
N2—Zn1—N2i 180.0 C5—C6—H6 119.3
N1i—Zn1—O1i 92.18 (7) C4—C7—H7A 109.5
N1—Zn1—O1i 87.82 (7) C4—C7—H7B 109.5
N2—Zn1—O1i 86.78 (7) H7A—C7—H7B 109.5
N2i—Zn1—O1i 93.22 (7) C4—C7—H7C 109.5
N1i—Zn1—O1 87.82 (7) H7A—C7—H7C 109.5
N1—Zn1—O1 92.18 (7) H7B—C7—H7C 109.5
N2—Zn1—O1 93.22 (7) C5—C8—H8A 109.5
N2i—Zn1—O1 86.78 (7) C5—C8—H8B 109.5
O1i—Zn1—O1 180.00 (5) H8A—C8—H8B 109.5
Zn1—O1—H1WA 124.6 (18) C5—C8—H8C 109.5
Zn1—O1—H1WB 108.7 (18) H8A—C8—H8C 109.5
H1WA—O1—H1WB 110 (2) H8B—C8—H8C 109.5
C1—N1—Zn1 107.71 (12) C14—C9—C10 118.65 (18)
C1—N1—H1A 108.0 (14) C14—C9—N3 121.1 (2)
Zn1—N1—H1A 107.1 (14) C10—C9—N3 120.01 (19)
C1—N1—H1B 111.9 (14) C11—C10—C9 118.68 (19)
Zn1—N1—H1B 116.6 (13) C11—C10—N4 121.26 (19)
H1A—N1—H1B 105 (2) C9—C10—N4 119.93 (18)
C2—N2—Zn1 107.66 (11) C10—C11—C12 122.9 (2)
C2—N2—H2A 108.9 (14) C10—C11—H11 118.5
Zn1—N2—H2A 111.8 (14) C12—C11—H11 118.5
C2—N2—H2B 111.9 (15) C11—C12—C13 118.52 (19)
Zn1—N2—H2B 106.0 (16) C11—C12—C15 119.4 (2)
H2A—N2—H2B 111 (2) C13—C12—C15 122.0 (2)
C9—N3—H3A 116.8 (17) C14—C13—C12 118.65 (19)
C9—N3—H3B 111.6 (16) C14—C13—C16 119.7 (2)
H3A—N3—H3B 112 (2) C12—C13—C16 121.7 (2)
C10—N4—H4A 113.0 (18) C9—C14—C13 122.6 (2)
C10—N4—H4B 114.7 (17) C9—C14—H14 118.7
H4A—N4—H4B 107 (2) C13—C14—H14 118.7
C6—C1—C2 119.58 (17) C12—C15—H15A 109.5
C6—C1—N1 122.50 (17) C12—C15—H15B 109.5
C2—C1—N1 117.84 (16) H15A—C15—H15B 109.5
C3—C2—C1 119.14 (17) C12—C15—H15C 109.5
C3—C2—N2 123.19 (18) H15A—C15—H15C 109.5
C1—C2—N2 117.59 (16) H15B—C15—H15C 109.5
C2—C3—C4 121.84 (19) C13—C16—H16A 109.5
C2—C3—H3 119.1 C13—C16—H16B 109.5
C4—C3—H3 119.1 H16A—C16—H16B 109.5
C3—C4—C5 118.86 (18) C13—C16—H16C 109.5
C3—C4—C7 119.5 (2) H16A—C16—H16C 109.5
C5—C4—C7 121.6 (2) H16B—C16—H16C 109.5
Zn1—N1—C1—C6 −152.85 (15) C4—C5—C6—C1 1.3 (3)
Zn1—N1—C1—C2 24.00 (19) C8—C5—C6—C1 −177.21 (19)
C6—C1—C2—C3 −2.4 (3) C14—C9—C10—C11 −0.4 (3)
N1—C1—C2—C3 −179.38 (16) N3—C9—C10—C11 173.98 (18)
C6—C1—C2—N2 174.28 (17) C14—C9—C10—N4 −176.29 (18)
N1—C1—C2—N2 −2.7 (2) N3—C9—C10—N4 −1.9 (3)
Zn1—N2—C2—C3 156.68 (15) C9—C10—C11—C12 −0.7 (3)
Zn1—N2—C2—C1 −19.9 (2) N4—C10—C11—C12 175.16 (19)
C1—C2—C3—C4 1.8 (3) C10—C11—C12—C13 1.4 (3)
N2—C2—C3—C4 −174.74 (17) C10—C11—C12—C15 −178.3 (2)
C2—C3—C4—C5 0.4 (3) C11—C12—C13—C14 −1.1 (3)
C2—C3—C4—C7 −179.85 (18) C15—C12—C13—C14 178.7 (2)
C3—C4—C5—C6 −1.9 (3) C11—C12—C13—C16 179.2 (2)
C7—C4—C5—C6 178.34 (19) C15—C12—C13—C16 −1.0 (3)
C3—C4—C5—C8 176.51 (19) C10—C9—C14—C13 0.7 (3)
C7—C4—C5—C8 −3.2 (3) N3—C9—C14—C13 −173.60 (19)
C2—C1—C6—C5 0.9 (3) C12—C13—C14—C9 0.0 (3)
N1—C1—C6—C5 177.72 (17) C16—C13—C14—C9 179.7 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1WA···N4ii 0.81 (3) 2.13 (3) 2.924 (3) 164 (2)
O1—H1WB···Cl1iii 0.80 (3) 2.31 (3) 3.1083 (17) 173 (2)
N1—H1A···Cl1iii 0.84 (2) 2.55 (2) 3.3551 (18) 160.3 (18)
N1—H1B···N3iv 0.85 (2) 2.31 (2) 3.137 (3) 162.6 (18)
N2—H2A···Cl1v 0.87 (2) 2.63 (2) 3.4401 (19) 155.3 (18)
N2—H2B···Cl1i 0.81 (2) 2.57 (2) 3.3105 (18) 154 (2)
N3—H3A···Cl1v 0.84 (3) 2.68 (3) 3.516 (2) 174 (2)
N3—H3B···Cl1vi 0.87 (3) 2.89 (2) 3.3284 (19) 112.9 (18)
N4—H4B···Cl1v 0.87 (3) 2.50 (3) 3.355 (2) 171 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x, y, z−1; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) −x+1, −y+1, −z+2.

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Crystal data

[ZnCl2(C6H8N2)] Dx = 1.808 Mg m3
Mr = 244.41 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 2561 reflections
a = 8.4152 (12) Å θ = 2.8–29.2°
b = 7.5141 (9) Å µ = 3.27 mm1
c = 14.199 (2) Å T = 200 K
V = 897.8 (2) Å3 Prism, clear colourless
Z = 4 0.60 × 0.30 × 0.20 mm
F(000) = 488

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Data collection

Bruker SMART X2S benchtop diffractometer 1090 independent reflections
Radiation source: XOS X-beam microfocus source 992 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromator Rint = 0.040
Detector resolution: 8.3330 pixels mm-1 θmax = 27.5°, θmin = 2.8°
ω scans h = −10→5
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −8→9
Tmin = 0.40, Tmax = 0.56 l = −15→18
4392 measured reflections

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: mixed
wR(F2) = 0.074 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0377P)2] where P = (Fo2 + 2Fc2)/3
1090 reflections (Δ/σ)max < 0.001
72 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.58 e Å3

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.12938 (3) 0.75 0.38034 (2) 0.03201 (15)
N1 0.3669 (2) 0.75 0.3494 (2) 0.0343 (6)
H1 0.388 (2) 0.661 (3) 0.318 (2) 0.040 (7)*
N2 0.2002 (3) 0.75 0.51812 (18) 0.0354 (6)
H2 0.165 (3) 0.666 (3) 0.550 (2) 0.047 (7)*
Cl1 0.00184 (5) 0.50585 (6) 0.33279 (4) 0.04089 (18)
C1 0.4559 (3) 0.75 0.4370 (2) 0.0294 (6)
C2 0.3728 (3) 0.75 0.5215 (2) 0.0284 (6)
C3 0.4543 (4) 0.75 0.6066 (2) 0.0402 (7)
H3 0.3973 0.75 0.6644 0.048*
C4 0.6198 (4) 0.75 0.6068 (3) 0.0482 (9)
H4 0.6761 0.75 0.6648 0.058*
C5 0.7015 (4) 0.75 0.5231 (3) 0.0493 (8)
H5 0.8144 0.75 0.5237 0.059*
C6 0.6220 (3) 0.75 0.4382 (3) 0.0423 (8)
H6 0.6798 0.75 0.3807 0.051*

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0301 (2) 0.0408 (3) 0.0251 (2) 0 −0.00244 (10) 0
N1 0.0345 (12) 0.0468 (18) 0.0216 (12) 0 0.0024 (8) 0
N2 0.0346 (12) 0.0469 (17) 0.0246 (12) 0 0.0041 (9) 0
Cl1 0.0502 (3) 0.0367 (3) 0.0358 (3) −0.0066 (2) −0.0058 (2) 0.0032 (2)
C1 0.0341 (12) 0.0282 (14) 0.0259 (13) 0 −0.0001 (10) 0
C2 0.0309 (13) 0.0289 (14) 0.0253 (14) 0 −0.0005 (9) 0
C3 0.0498 (16) 0.0423 (17) 0.0283 (15) 0 −0.0035 (12) 0
C4 0.0487 (18) 0.051 (2) 0.045 (2) 0 −0.0201 (14) 0
C5 0.0331 (14) 0.053 (2) 0.061 (2) 0 −0.0120 (14) 0
C6 0.0331 (14) 0.051 (2) 0.0425 (19) 0 0.0048 (11) 0

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Geometric parameters (Å, º)

Zn1—Cl1 2.2301 (5) C5—C6 1.379 (5)
Zn1—Cl1i 2.2301 (5) C5—H5 0.95
Zn1—N1 2.047 (2) C4—C5 1.373 (5)
Zn1—N2 2.045 (3) C4—H4 0.95
N2—C2 1.453 (3) C3—C4 1.393 (4)
N2—H2 0.83 (3) C3—H3 0.95
N1—C1 1.452 (4) C2—C3 1.389 (4)
N1—H1 0.83 (3) C1—C2 1.388 (4)
C6—H6 0.95 C1—C6 1.398 (3)
Cl1—Zn1—Cl1i 110.70 (3) C4—C5—C6 120.9 (3)
N1—Zn1—N2 85.45 (10) C6—C5—H5 119.5
N1—Zn1—Cl1 113.89 (4) C4—C5—H5 119.5
N2—Zn1—Cl1i 115.46 (3) C5—C4—C3 119.9 (3)
N2—Zn1—Cl1 115.46 (3) C5—C4—H4 120.0
N1—Zn1—Cl1i 113.89 (4) C3—C4—H4 120.0
Zn1—N2—H2 114.1 (19) C2—C3—C4 119.7 (3)
C2—N2—H2 110.0 (17) C4—C3—H3 120.2
C2—N2—Zn1 108.84 (19) C2—C3—H3 120.2
Zn1—N1—H1 109.0 (14) C1—C2—C3 120.2 (2)
C1—N1—H1 111.0 (18) C3—C2—N2 121.5 (3)
C1—N1—Zn1 108.62 (18) C1—C2—N2 118.4 (2)
C5—C6—C1 119.7 (3) C2—C1—C6 119.6 (3)
C5—C6—H6 120.2 C6—C1—N1 121.7 (3)
C1—C6—H6 120.2 C2—C1—N1 118.7 (2)
Zn1—N1—C1—C2 0 C1—C2—C3—C4 0.0000 (10)
Zn1—N1—C1—C6 180.0 N2—C2—C3—C4 180.0000 (10)
C6—C1—C2—C3 0.0000 (10) C2—C3—C4—C5 0.0000 (10)
N1—C1—C2—C3 180.0000 (10) C3—C4—C5—C6 0.0000 (10)
C6—C1—C2—N2 180.0 C4—C5—C6—C1 0.0000 (10)
N1—C1—C2—N2 0.0000 (10) C2—C1—C6—C5 0.0000 (10)
Zn1—N2—C2—C1 0.0000 (10) N1—C1—C6—C5 180.0000 (10)
Zn1—N2—C2—C3 180.0000 (10)

Symmetry code: (i) x, −y+3/2, z.

(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1ii 0.83 (3) 2.61 (3) 3.368 (2) 152 (2)
N2—H2···Cl1iii 0.83 (3) 2.53 (3) 3.327 (2) 160 (2)

Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) −x, −y+1, −z+1.

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. DeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491–497. [DOI] [PubMed]
  3. Gallardo, H., Molin, F., Bortoluzzi, A. J. & Neves, A. (2008). Acta Cryst. E64, m541–m542. [DOI] [PMC free article] [PubMed]
  4. Geiger, D. K. (2012). Acta Cryst. E68, m1040. [DOI] [PMC free article] [PubMed]
  5. Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247–m248. [DOI] [PMC free article] [PubMed]
  6. Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, doi: 10.1021/acs. cgd. 6b00200.
  7. İbrahim, K., Şahin, O., Filiz, Y. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1909–m1911.
  8. Karimnejad, K., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m421. [DOI] [PMC free article] [PubMed]
  9. Lee, N. Y., Yoon, J. U. & Jeong, J. H. (2007). Acta Cryst. E63, m2471.
  10. Li, F., Ou, X.-P. & Huang, C.-C. (2012). Acta Cryst. E68, m653–m654. [DOI] [PMC free article] [PubMed]
  11. Lian, Z., Zhao, N., Zhang, J., Gu, Y., Li, X. & Tang, B. (2009). Z. Kristallogr. New Cryst. Struct. 224, 399–401.
  12. Liu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795–4805.
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. Mei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871–873.
  15. Necefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m462–m464.
  16. Ovalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269–m271.
  17. Qian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Shi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593. [DOI] [PMC free article] [PubMed]
  21. Singh, K., Kumar, A., Srivastava, R., Kadyan, P. S., Kamalasanan, M. N. & Singh, I. (2011). Opt. Mater. 34, 221–227.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tan, R., Wang, Z.-B., Li, Y., Kozera, D. J., Lu, Z.-H. & Song, D. (2012). Inorg. Chem. 51, 7039–7049. [DOI] [PubMed]
  24. Wang, C.-J., Yue, K.-F., Zhang, W.-H., Jin, J.-C., Huang, X.-Y. & Wang, Y.-Y. (2010). Inorg. Chem. Commun. 13, 1332–1336.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Xu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517–15525.
  27. You, Z.-L. (2005). Acta Cryst. C61, m383–m385. [DOI] [PubMed]
  28. Yue, S.-M., Xu, H.-B., Ma, J.-F., Su, Z.-M., Kan, Y.-H. & Zhang, H.-J. (2006). Polyhedron, 25, 635–644.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, Ia, II, Ib. DOI: 10.1107/S2056989016010033/lh5817sup1.cif

e-72-01037-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) Ia. DOI: 10.1107/S2056989016010033/lh5817Iasup2.hkl

e-72-01037-Iasup2.hkl (92.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016010033/lh5817Iasup5.mol

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016010033/lh5817IIsup3.hkl

e-72-01037-IIsup3.hkl (288.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016010033/lh5817IIsup7.mol

Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989016010033/lh5817Ibsup4.hkl

e-72-01037-Ibsup4.hkl (89.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016010033/lh5817Ibsup6.mol

CCDC references: 1486732, 1486731, 1486730

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES