Skip to main content
Reproductive Health logoLink to Reproductive Health
. 2016 Aug 23;13(1):98. doi: 10.1186/s12978-016-0205-1

Mapping adolescent first births within three east African countries using data from Demographic and Health Surveys: exploring geospatial methods to inform policy

Sarah Neal 1,, Corrine Ruktanonchai 2, Venkatraman Chandra-Mouli 3, Zoë Matthews 1, Andrew J Tatem 2,4
PMCID: PMC4994382  PMID: 27553956

Abstract

Background

Early adolescent pregnancy presents a major barrier to the health and wellbeing of young women and their children. Previous studies suggest geographic heterogeneity in adolescent births, with clear “hot spots” experiencing very high prevalence of teenage pregnancy. As the reduction of adolescent pregnancy is a priority in many countries, further detailed information of the geographical areas where they most commonly occur is of value to national and district level policy makers. The aim of this study is to develop a comprehensive assessment of the geographical distribution of adolescent first births in Uganda, Kenya and Tanzania using Demographic and Household (DHS) data using descriptive, spatial analysis and spatial modelling methods.

Methods

The most recent Demographic and Health Surveys (DHS) among women aged 20 to 29 in Tanzania, Kenya, and Uganda were utilised. Analyses were carried out on first births occurring before the age of 20 years, but were disaggregated in to three age groups: <16, 16/17 and 18/19 years. In addition to basic descriptive choropleths, prevalence maps were created from the GPS-located cluster data utilising adaptive bandwidth kernel density estimates. To map adolescent first birth at district level with estimates of uncertainty, a Bayesian hierarchical regression modelling approach was used, employing the Integrated Nested Laplace Approximation (INLA) technique.

Results

The findings show marked geographic heterogeneity among adolescent first births, particularly among those under 16 years. Disparities are greater in Kenya and Uganda than Tanzania. The INLA analysis which produces estimates from smaller areas suggest “pockets” of high prevalence of first births, with marked differences between neighbouring districts. Many of these high prevalence areas can be linked with underlying poverty.

Conclusions

There is marked geographic heterogeneity in the prevalence of adolescent first births in East Africa, particularly in the youngest age groups. Geospatial techniques can identify these inequalities and provide policy-makers with the information needed to target areas of high prevalence and focus scarce resources where they are most needed.

Keywords: Adolescent, Fertility, Inequality, Spatial analysis, Small area estimation

Background

Pregnancy in adolescence can present a major barrier to the health and wellbeing of young women and their children, and can contribute to long term educational and socio-economic disadvantage [1]. As we move towards the broader post 2015 Sustainable Development Goals agenda, attention is focussed more closely on how more nuanced indicators can highlight the needs of vulnerable sections of the population, and track how their needs are addressed through policies and programmes. National level targets may well be achieved by focussing on certain sectors of the population or geographical region whilst leaving other groups lagging behind, which again points to the need for demographic and spatial disaggregation to highlight disparities. A recent study by Neal et al. [2] in Uganda, Tanzania and Kenya highlighted the marked concentration of adolescent first births (particularly among younger adolescents) among the poorest and least educated sections of the population, and also found that progress over time was poorest amongst the most disadvantaged. The study also identified very marked geographic disparities in rates of adolescent first births within the three countries at state (administrative level 1) level.

Spatial inequalities in adolescent pregnancy and births are found in both high and low income countries, and are likely to reflect underlying levels of deprivation as well as inadequate access to reproductive health services [3]. In addition, adolescent motherhood is often strongly rooted in cultural practices, and this may well lead to prevalence (particularly among the youngest age groups) being concentrated within geographical “pockets” where communities share particular beliefs, norms and practices as well as possibly suffer high levels of deprivation. Spatial mapping of adolescent pregnancies has been used in developed country contexts to understand these geographic distributions, and has identified “hotspots” of adolescent births: small localities with high levels of adolescent childbearing [4, 5].

Prevalence mapping for disease or other adverse outcomes has become an important tool for policy makers in low income countries, and numerous studies have examined the spatial distribution of a range of maternal and child health and nutrition outcomes (e.g. [610]). While the value of this approach has been acknowledged with regards to adolescent programming (e.g. [11]) it has rarely been utilised for mapping the distribution of adolescent childbearing in low income country contexts. As the reduction of adolescent pregnancy is a priority in many countries, further detailed information of the geographical areas where they most commonly occur is of value to national and district level policy makers.

The aim of this study is to develop a comprehensive assessment of the geographical distribution of adolescent first births in Uganda, Kenya and Tanzania using Demographic and Household Surveys (DHS) data. In order to provide data that is useful for a range of policy makers and planners we present three separate approaches outlined by Ebener et al. [12] which can contribute to a greater understanding of spatial distribution of early first births:

  1. Descriptive/thematic mapping (creation of maps to convey information about a topic or theme) using choropleths

  2. Spatial analyses (extraction or creation of new information from spatial data) using adaptive bandwidth kernel density estimates

  3. Spatial modelling (spatial analysis that includes the use of statistical models to simulate phenomena) in a Bayesian framework.

These three approaches offer different perspectives and advantages for policy makers within the field of adolescent health. Descriptive mapping is generally used for presenting a visual representation of geographical variation for relatively large regions. It gives an overview of geographical inequities within countries, and a series of such maps can be used to highlight temporal trends or regions where progress in reducing adolescent births is particularly poor or good. Applying spatial analysis to information on adolescent childbearing using kernel density estimates provides an overall picture of “hotspots”, which is not constrained by administrative boundaries. This can be particularly useful when looking at correlations with other factors that transcend boundaries such as ethnic groupings. Finally, spatial modelling can be used to estimate rates of adolescent first births for small areas such as districts, using additional correlated variables. These are useful for identifying pockets of high prevalence, and can assist district level policy makers in setting priorities.

We present results from the application of these three approaches and thus produce an outline of the geography of adolescent childbearing in three countries disaggregated by age at under 16 years, 16–17 years and 18–19 years. Separating out the age groups enables births among the most vulnerable younger adolescents to be identified and mapped separately. Our discussion suggests how underlying factors may explain these geographic inequalities. It also outlines the advantages and disadvantages of the three different methods, as well as highlighting how policy makers have used such data in low income countries, and the potential for future use.

Methods

Data

Data were extracted for these analyses from the most recent Demographic and Health Surveys at the time of writing for Tanzania (2010), Kenya (2008), and Uganda (2011) [1315]. The sample was restricted to women aged 20 to 29 at the time of the survey, resulting in sample sizes of n = 3347 Tanzanians, n = 3167 Kenyans, and n = 3284 Ugandans. Global Positioning Systems (GPS) coordinates of corresponding cluster locations were also gathered through the DHS and mapped using ArcGIS software version 10.2.2 [16]. Participant confidentiality is maintained by the DHS through cluster displacement of up to 2 km for urban clusters and 5 km for rural clusters. For these analyses, a total of 457 clusters were used for Tanzania, 397 clusters in Kenya, and 400 clusters in Uganda. Figure 5 in Appendix 1 shows the locations of the displaced clusters with associated sample size and urban/rural status. Of note, two districts in Tanzania contained no observed clusters containing women aged 20 to 29 years (Bukoba Urban and Pangani), while one district had only data for births between 18 and 19 years (Mafia). Data were weighted as outlined by DHS guidelines, using SAS version 9.4 software [17]. Administrative boundary shapefiles were obtained from the freely available Database of Global Administrative Areas (GADM) [18], while DHS regional shapefiles were obtained from the DHS [19], and projected using the World Geodetic System 1984 projection.

The outcome of interest was the percentage of women aged 20–29 at the time of survey who had given birth before the age of 20 years. As Neal et al.’s [2] earlier study found important differences in age patterns within the range of adolescent ages, we disaggregated the outcome into three different age groups: first birth before 16, 16–17 and 18–19 years.

Descriptive mapping

Descriptive analyses were performed and presented in Table 1, by country and age group. In addition we produced descriptive choropleth maps using ArcGIS software version 10.2. These are thematic maps in which areas are shaded proportional to the measurement of the statistical variable being displayed: in this case age at first birth. As these descriptive maps are based directly on the survey estimates for the outcome it is not feasible to carry out analysis for small areas as small sample sizes result in large confidence intervals. Thus, the maps are presented at administrative level 1. These maps employed weighted outcomes, as outlined by DHS guidelines.

Table 1.

Unweighted sample characteristics among female DHS respondents aged 20 to 29, by country and age at first birth (N = 9,798)

Kenya (N = 3,167) Tanzania (N = 3,347) Uganda (N = 3,284)
N (%) N (%) N (%)
DHS Survey year 2008 2010 2010
# of DHS Clusters 397 457 400
Any birth 2,403 (75.9 %) 2,641 (78.9 %) 2,742 (83.5 %)
Mean age at first birth 19.1 ± 2.9 19.3 ± 2.6 18.7 ± 2.9
Less than 16 years 324 (10.2 %) 212 (6.3 %) 435 (13.2 %)
No education 105 (32.4 %) 85 (40.1 %) 69 (15.9 %)
Poorer or poorest quintiles 166 (51.2 %) 97 (45.8 %) 196 (45.1 %)
16 to 17 years 546 (17.2 %) 633 (18.9 %) 700 (21.3 %)
No education 87 (15.9 %) 190 (30.0 %) 110 (15.7 %)
Poorer or poorest quintiles 234 (42.9 %) 267 (42.2 %) 320 (45.7 %)
18 to 19 years 676 (21.3 %) 855 (25.5 %) 766 (23.3 %)
No education 99 (14.6 %) 174 (20.4 %) 95 (12.4 %)
Poorer or poorest quintiles 263 (38.9 %) 353 (41.3 %) 340 (44.4 %)

Spatial analyses

Kernel density estimation (KDE) is a non-parametric method for estimating density, and uses all the data points to create an estimate of how the density of events varies over a given area [20]. It produces a smooth map in which the density at every location reflects the number of points in the surrounding area. This can then be used to create prevalence surfaces, or heat maps, by generating a ratio of case data to control data. We used this method to create heat maps of adolescent first births with the prevR package in R software [21]. Further details of the methodology used can be found in Appendix 2, and are described elsewhere in the literature [22].

Spatial modelling

The Integrated Nested Laplace Regression (INLA) modelling approach is a technique that can be used for small area estimation, which involves the estimation of parameters of sub-populations confined within a small geographical area as part of a larger survey population. It utilises a Bayesian hierarchical spatial regression modelling approach and was carried out here using the INLA package in R [23]. Such geoadditive models incorporating the INLA technique have been used previously in the DHS literature as a method to control for spatially correlated effects in a Bayesian framework [24]. By utilising a Bayesian framework, uncertainties in estimates can be quantified and presented, suggesting where future data collection efforts might be focussed.

For these analyses, proportions are presented at the administrative unit 2 level for Tanzania and Kenya, while the administrative unit 1 level was used for Uganda due to the high number of districts within the country (n = 168). By presenting provincial prevalence within Uganda, parity between geographical units can be maintained. Further methodological details can be found in Appendix 2, while associated confidence intervals and standard deviations for estimates are presented in Appendix 3.

Results

Sample characteristics

Overall, a total of 9,798 respondents were used in these analyses, utilising surveys administered between 2008 and 2010. Overall, 79.5 % of women (N = 7786) reported having any children by the time of survey, with mean age at first birth 19.0 years ± 2.8 years. Among this group of parous women, 9.9 % (N = 971) experienced first birth at less than 16 years old, while 19.2 % (N = 1879) had their first birth between ages 16 and 17, and 23.4 % (N = 2297) between ages 18 and 19. Among those having their first birth at less than 16 years of age, 26.7 % (N = 259) of women reported having no education and 47.3 % (N = 459) fell into the bottom two wealth quintiles, as defined by the DHS. Finally, after applying population-normalized DHS weights to ensure representation at the multi-country level, regional prevalence of first birth at less than 16 years was found to be 9.8 %, while prevalence of first birth between 16 and 17 years of age was 19.8 and 24.9 % between 18 and 19 years. Tables 1 and 2 show these sample characteristics broken down by country.

Table 2.

Weighted prevalence of adolescent motherhood among female DHS respondents aged 20 to 29, by country

Kenya (N = 3,167) Tanzania (N = 3,347) Uganda (N = 3,284)
(%) (%) (%)
Less than 16 years 9.0 % 7.3 % 14.0 %
16 to 17 years 17.8 % 20.2 % 21.9 %
18 to 19 years 22.5 % 28.1 % 24.2 %

To provide a regional picture of adolescent first births in East Africa, choropleth maps were generated for DHS regions. Figure 1 reflects weighted sub-national proportions of women who had their first birth at less than 16 years old (Fig. 1a), from 16 to 17 years old (Fig. 1b), and 18 to 19 years old (Fig. 1c). Kenya and Uganda show marked geographic heterogeneity for first births under 16 years: for instance eastern Kenya and parts of Uganda have more than 20 % of women having a first birth before the age of 16, whereas for much of the country the figure is less than 10 %. In Tanzania there appears to be less geographical variation. Generally, as overall prevalence of first birth increases for ages 16/17 and 18/19 the heterogeneity also decreases.

Fig. 1.

Fig. 1

Weighted proportion of adolescent birth in East Africa among DHS respondents aged 20 to 29, at a less than 16 years old, b 16 to 17 years old, and c 18 to 19 years old

Spatial analyses

Prevalence surfaces, or “heat maps”, of maternal age at first birth were generated using an adaptive bandwidth technique encompassing an optimal number of persons surveyed through the DHS, similar to a nearest neighbour approach. The optimal N parameter (Nopt) used in these analyses is defined in Appendix 1, and has been published in detail elsewhere [22]. Figure 2a represents the percentage of women having their first birth before 16 years old, while Fig. 2b and c represent ages 16 to 17, and 18 to 19 years respectively. Prevalence of childbearing tended to increase with increasing age; therefore, to emphasize within-group regional heterogeneity, varying scales were used between age categories, as specified in the corresponding legend key for each map. This was done to highlight areas within East Africa which might have high prevalence of birth in a given age category, even though this proportion might be lower as compared with other age categories. The kernel density maps broadly correlate with the choropleths, although the different scales bring out more clearly inequities in the 16/17 and 18/19 year age groups. Again, there is less variation in Tanzania for all age groups than for Kenya or Uganda. The lack of constraint from administrative boundaries allows us to see how “hot spots” or “cool spots” cross and are unaffected by country boundaries e.g. there is an area of lower prevalence that spread along the border between Uganda and Kenya for adolescent births <16 years, as well as several areas of higher prevalence than traverse the borders between Tanzania and Kenya for all three age groups.

Fig. 2.

Fig. 2

Regional heat map of adolescent birth in East Africa estimated by adaptive bandwidth KDE approach, at a less than 16 years old, b 16 to 17 years old, and c 18 to 19 years old

Spatial modelling

Predicted prevalence of maternal age at first birth is shown in Fig. 3 for less than 16 years (Fig. 3a), between 16 and 17 years (Fig. 3b), and 18 to 19 years (Fig. 3c). To emphasize within-country variation in prevalence across age groups, countries are presented in columns by age categories for Fig. 3ac. As would be expected there are strong similarities between the maps produced by the three techniques (and the choropleth and INLA for Uganda based on the same administrative unit level are highly comparable). However, for Kenya and Tanzania the INLA technique provides more nuances and detailed estimates as compared to the previously mentioned techniques. While it again broadly complies with both the choropleths and the kernel density maps, it suggests in some cases marked differences in neighbouring districts, which come out less clearly using the other two methods e.g. it highlights high levels of first births under 16 years in Mbarali district, Tanzania.

Fig. 3.

Fig. 3

Predicted prevalence of adolescent birth in Kenya, Uganda and Tanzania estimated by Bayesian modelling, at a less than 16 years old, b 16 to 17 years old, and c 18 to 19 years old

To reflect uncertainty in the mean estimates displayed in Fig. 3, we mapped standard deviations of the posterior distribution for each district, with corresponding 95 % confidence intervals listed in Appendix 3. These standard deviations reflect the range under which the presented estimates may fall, thereby providing an overall representation of variability within a given district which may assist policy makers in understanding the degree in which they can rely on the data for decision making. In general, the distribution of standard deviations approached normality with increasing age, most likely due to more frequent outcomes, or births (Fig. 6). Areas with highest associated standard deviations at less than 16 years of age included the north eastern region of Kenya and coastal areas of Tanzania. Such variation is likely a result of increasingly rare outcomes in more rural areas with already low sample sizes, and suggest future analyses examining adolescent motherhood might benefit from more focussed data collection efforts in rural areas. The area with highest standard deviation occurred in Mafia, an island off Tanzania’s coast, for births between 18 and 19 years. Most notably, births at less than 16 years old and between 16 and 17 years were not observed for this region, while births between 18 and 19 were also low, resulting in high standard deviation and wide confidence intervals (SD: 0.20; 97.5 % CI: 0.07–0.81). Detailed posterior distribution parameters for each region are outlined in Tables 3 through 5 in Appendix 3.

The disaggregation by age group for the three countries makes it possible to note emerging age-related patterns. In Tanzania very few districts have significant numbers of births under 16 years, but this is not the case for Kenya and Uganda. However, for the 16/17 age groups there are a number of districts with very high proportions of first births in all countries including Tanzania, as well as marked heterogeneity between regions. If we consider the 18/19 age group, there is less heterogeneity as most districts have high rates of first birth, although Kenya still has a number of regions with relatively low proportions. Most districts or regions show the pattern that would be expected where the proportion of first births increases with age, but there are exceptions: for example Mandera and Wajir actually have higher percentages of first births at <16 years, and these decline for 16/17 and 18/19 years (presumably because the majority or women have already given birth before these later age groups).

Discussion

The findings show marked geographical heterogeneity for adolescent first births, particularly in Kenya and Uganda. The distribution in Tanzania, however, is more homogenous, at least for the <16 and 18/19 year group. These differences are most marked for the <16 age groups. While the INLA estimates at district level reflect broader patterns shown in the regional level choropleths, the more detailed maps are in some cases able to demonstrate “hot spots”, with marked heterogeneity across neighbouring districts.

A proportion of this heterogeneity is likely to reflect differences in underlying socio-economic determinants of adolescent fertility such as poverty and education. Previous work in Uganda and Kenya using small area estimation techniques has clearly demonstrated heterogeneity at the district level for various economic status indicators [25, 26], and indeed there is marked correlation of “hot spots” of poverty with our own estimates of high prevalence of early first births. Probably the most marked area of high prevalence are found in Kenya in the Mandera and Wajir region. While the standard errors are relatively large due to these regions being sparsely populated, the findings are plausible as they generally have very poor socio-economic indicators: they are ranked the second and third poorest districts in the country [27]. In addition this area is most populated by nomadic pastoralists, including many from the Somali ethnic group (some of whom have arrived as refugees from the conflict in Somalia). These populations have strong traditions of early marriage, as well as low levels of autonomy for women [28, 29]. In Uganda, the eastern districts with high levels of first births under 16 also have quite high levels of poverty, as well as having been affected by conflict, with a number of regions still experiencing high levels of displaced populations or food insecurity. Some findings are more difficult to explain. While moderate uncertainty parameters suggest the estimates should be interpreted with caution, some districts with very high levels of poverty in northern Uganda actually have relatively low levels of first births <16 years, which suggest cultural differences. Conversely, Mbarali district in Tanzania has a relatively high level of first birth <16 years compared to neighbouring districts, yet it is relatively wealthy. However, it does have a prevalence of HIV infection higher than the national average [30] which may suggest particular norms in sexual behaviour, and in addition to its geographical position on the Dar-Es Salaam – Mbeya corridor these findings may warrant further investigation. The area also has a large number of Maasai migrants who have a strong culture of early marriage, so this may also partially explain the findings [28, 29]. The apparent high rate of first births to women under the age of 16 years in Dodoma Urban also warrants further analysis. The lesser degree of geographical heterogeneity in Tanzania is difficult to conclusively explain, but may partly reflect the lower level of socio-economic inequity compared with Kenya and Uganda as measured by the Gini coefficient of inequality and the percentage inequality in income [31]. A further reason could be explained by differences in ethnic composition: the Tanzanian population is composed of a large number of smaller ethnic groups, which may mean diversity between ethnic groups is less clearly visible within a geographical context (or indeed there may be less ethnic diversity among the groups in terms of adolescent pregnancy).

Differences could at least partly reflect differing access to contraception: DHS reports show wide geographic variations in contraceptive prevalence in all three countries [1315]. However, contraceptive uptake to prevent first births in nulliparous women is extremely low in all three countries (5 % in Tanzania and Uganda, and 14 % in Kenya [1315]), so this is probably not a major factor.

The high levels of first births in young women under the age of 16 years in some parts of Kenya and Uganda is particularly concerning: there is evidence that the health disadvantages faced by both adolescent mothers and their infants are concentrated among younger adolescents, so should be of particular concern to policy makers [3234]. The disaggregation by age groups allows us to ascertain age-related patterns which are often lost in studies that use a single indicator for adolescent births. Several areas such as Mandera and Wajir require further investigation and possible interventions, as do other districts in Uganda and Tanzania where rates appear high. High rates of first births at an early age suggest areas where appropriate services and information must be made available at a young age before sexual activity commences, which may require a markedly different approach to those targetted at older adolescents to allow for different levels of cognitive and emotional development. In addition further investigation is needed to understand the contexts of these pregnancies (e.g. within or outside marriage) to enable a comprehensive approach to addressing the issue [35]. In many contexts this will ensure developing and enforcing legal frameworks to establish age at marriage and protect girls from abuse and exploitation.

Using mapping and Geographic Information System (GIS) techniques to inform policy and planning

This work provides examples of how mapping and spatial analyses using already-existing data can inform policy-makers about locations where the prevalence of adolescent pregnancies is high. In recent years there has been a marked increase in the number of studies drawing on geospatial techniques to either map health indicators or examine geographical access to services (e.g. [79]). The growing availability of georeferenced information available through large scale surveys such as the DHS provide further opportunities to use these methods in low and middle income countries to guide policy and practice. Using a variety of methods, as in this study, enables findings to be triangulated to confirm areas of potential concern. Such methods may need to be supported by more detailed analysis of local level data from either existing sources such as vital registration in areas where this data is available for the majority of the population, or health records where nearly all births occur within the health system. Alternatively, it may be necessary to gather focussed and specific data collection methods which can provide more nuanced information and assist in the development of strategies to respond to need.

When we specifically look at how geospatial data has been integrated within policy and planning for adolescent pregnancy prevention, the UK Teenage Pregnancy Reduction strategy developed in 1999 provides an interesting example [3638]. This included the collation and dissemination of ward-level data on teen conceptions in order to identify “hotspots” (defined as more than 6 % of 15–19 year olds becoming pregnant). These high prevalence neighbourhoods could then be targeted in terms of resources and interventions.

This paper has focussed on thematic mapping to identify areas of high adolescent prevalence. However further opportunities exist for using mapping and other geospatial modelling techniques to examine associations with other variables, or attempt to explain variance. At a simple level it is possible to layer different variables onto choropleth maps to show how different attributes may be associated to provide a clear visual representation: an example is shown in Fig. 4 which demonstrates the association between lack of education and births before age 16 years by region in Kenya. However, it must be noted that this is not always feasible at a small area level: the regional administrative level used for the map in Fig. 4 may restrict its value to policy makers. Alternative methodologies have been used to investigate how relationships between adolescent motherhood and underlying determinants vary spatially [4, 39] and this offers opportunities for further analysis in low and middle income countries.

Fig. 4.

Fig. 4

Weighted level of education and first birth at less than 16 years old by province, Kenya DHS 2008

Limitations and advantages of geospatial techniques

The mapping techniques demonstrated in this paper have respective advantages and limitations for policy makers. The initial choropleths presented in this study based on prevalence are easy to carry out and present a visual representation of direct estimates that is easy to interpret. The technique does not need georeferenced data and can be created using free software. However, they cannot be used for small areas based on most national survey data sources as sample sizes will be too small and confidence intervals too great, which may limit their value to policy makers: this however may not be the case for data sources that do not rely on sampling (e.g. vital registration or census data). Kernel density estimates show “heat maps” of high prevalence areas that can be identified independently of administrative boundaries, and this can both be a positive or a negative attribute: when examining the relationship between adolescent motherhood and factors not affected by boundaries such as ethnicity it may be an advantage, but may be a disadvantage for policy makers keen to understand levels specifically within their own districts or regions. INLA can provide small area information which can be tailored to match the relevant administrative unit for health, thus making it particularly valuable for policy makers and theoretically at least can be used on very small areas, making it less likely that smaller hotspots are overlooked. It must however, be remembered that this is modelled data rather than direct estimates, and attention should be paid to estimates of uncertainty when interpreting the results. The uncertainty estimates for this study vary, but in some districts it suggests that results should be interpreted with caution, particularly where the estimates are wide, and supports the need for triangulation of data from other sources to guide programmatic decisions. While freely available via open source software, it requires fairly specialized knowledge or staff to implement in a programmatic setting. The use of a number of different techniques as included in this study offers an opportunity to triangulate findings and present more robust evidence.

There are also possible limitations associated with the use of DHS data, which relies on retrospective reporting of birth histories to identify adolescent births. This may be prone to either intentional or unintentional recall bias around age at first birth, and in particular there is some evidence that very young adolescent births may be under-reported: a previous study suggests this is most likely when using a sample of 15–19 year olds [40], so our use of a sample of 20–29 year old women should minimise this. Further potential bias may be introduced as the survey will record the birth at the place where the mother was residing at the time of the survey, not where she was at the time of the birth.

Conclusion

Our studies demonstrate marked geographical heterogeneity in adolescent first births, particularly in Uganda and Kenya. These inequities are particularly marked for births under the age of 16 years, which is the group most likely to experience adverse outcomes from pregnancy for themselves and their infants The use of these three geospatial techniques enable these differences to be examined at regional and, in the case of Kenya and Tanzania, district level, as well as being able to display prevalence without the constraints of administrative boundaries. The use of several different methods allow results to be triangulated and enables greater confidence in the results. Such findings can provide policy-makers with the information needed to target areas of high prevalence and focus scarce resources where they are most needed. Geospatial methods have already proved valuable in guiding policy in developed countries and the proliferation of georeferenced data through surveys in low income countries offers greater opportunities to understand and address geographic inequities.

Abbreviations

DHS, Demographic and Household Surveys; GIS, geographic information systems; INLA, Integrated Nested Laplace Approximation; KDE, Kernel density estimation

Acknowledgements

Funding for the analysis was received by WHO Department of Reproductive Health and Research. SN is funded through a British Academy postdoctoral fellowship. CR is a PhD student funded through the University of Southampton’s Economic and Social Research Council’s Doctoral Training Centre. AJT is supported by a Wellcome Trust Sustaining Health Grant (106866/Z/15/Z) and funding from NORAD and the Bill and Melinda Gates Foundation (OPP1106427, 1032350, OPP1134076).

Authors’ contribution

SN developed the concept and design of the study, and wrote most of the first draft. CR contributed to the design of the study and carried out the analysis and drafted the methodology section. VCR helped develop the concept and commented on / contributed to drafts. ZM commented on / contributed to drafts. AT provided advice for the analysis and commented on / contributed to drafts. All authors read and approved the final manuscript.

Competing interest

The authors declare that they have no competing interests.

Appendix 1: DHS Cluster locations

Fig. 5.

Fig. 5

Displaced DHS cluster locations (N = 1254) with corresponding sample size and urban versus rural status

Appendix 2: Further details of methodology used for Kernel Density Estimation and INLA

Kernel density

Because DHS data uniquely employ clusters comprised of both cases and controls, spatial independence cannot be assumed when using these data. To address this limitation, the prevR package was developed by Larmarange et al. [22] specifically for use with DHS data to create smoothed prevalence surfaces using adaptive bandwidth kernel estimator techniques, with radii width varying to encompass an equal number of persons surveyed. This technique is advantageous over other fixed and adaptive bandwidth kernel estimator approaches specifically in regards to DHS data, where cases and controls for a given system cannot be assumed to be spatially independent of each other, and often are in fact geographically located within the same DHS cluster.

To create a unified prevalence surface of the East Africa region, DHS data from all three countries were pooled prior to analysis. Of note, prevalence scales vary between groups as indicated by the associated legend, emphasizing regional variation among age groups. Cluster weights were re-scaled to sum to 1 within country, then multiplied by the 2010 population of females 20 to 29, ensuring comparability across countries (UN World Population Prospects, 2012). This was done using the following equation for each of the three analysis countries:

Wnew=WDHS/WDHS*Popfemale2029

The optimal number of persons surveyed, or N parameter, was calculated using the following formula outlined in Larmarange et al. [22]:

Nopt=14,172·n0.419·p0.361c0.03791.011

where n equals number of persons surveyed within the sample, p denotes sample prevalence, and c specifies number of sample clusters. Because kernel estimator approaches are highly contingent upon bandwidth size, this equation is beneficial in calculating the optimal bandwidth size to produce a surface with sufficiently high resolution smoothness, while also compensating for localized variations. For these analyses, n = 9050 total persons surveyed, with c = 1252 clusters.

INLA

A model incorporating both spatial and random effects was used because it produced the lowest deviance information criteria (DIC) as compared to models incorporating a spatial effect or random effect alone. We assumed an uninformative prior distribution, and defined the outcome of interest as following a Bernoulli distribution, with prevalence of adolescent first birth, p, ranging between 0 and 1. Covariates of the model included proportion of the sample with rural residences, proportion with no education, and proportion classified as being in the bottom two wealth quintiles.

Appendix 3: Uncertainty estimates for INLA approximations

Fig. 6.

Fig. 6

Standard deviations of predicted INLA estimates, at a less than 16 years old, b 16 to 17 years old, and c 18 to 19 years old

Table 3.

Uncertainty parameters for INLA approximations at less than 16 years old, by country

Mean SD 2.5 % quantile 50 % quantile 97.5 % quantile Mode
TANZANIA
 Aru Meru 0.08451 0.033248 0.032747 0.08007 0.161952 0.071867
 Arusha 0.155814 0.056362 0.064061 0.149729 0.282175 0.13709
 Babati 0.058121 0.025304 0.019719 0.054604 0.11751 0.048551
 Bagamoyo 0.096333 0.032069 0.044821 0.092473 0.170154 0.085443
 Bariadi 0.056383 0.020757 0.022529 0.054222 0.102986 0.050172
 Biharamulo 0.050484 0.01954 0.019258 0.048248 0.094798 0.043936
 Bukoba Rural 0.055073 0.025062 0.017921 0.051191 0.114824 0.044167
 Bukombe 0.062469 0.024808 0.023427 0.059385 0.119705 0.05388
 Bunda 0.068573 0.029143 0.024077 0.064493 0.137058 0.057262
 Chake 0.074684 0.040557 0.021303 0.066404 0.177179 0.053255
 Chunya 0.082862 0.027813 0.0384 0.079476 0.147257 0.07369
 Dodoma Rural 0.120411 0.037407 0.057911 0.11676 0.20393 0.109849
 Dodoma Urban 0.253989 0.079326 0.118003 0.247709 0.425274 0.233964
 Geita 0.062487 0.022528 0.025428 0.06029 0.112487 0.055975
 Hai 0.077817 0.033216 0.028598 0.072587 0.157267 0.06308
 Hanang 0.063946 0.029677 0.020331 0.059329 0.134899 0.051414
 Handeni 0.088394 0.032864 0.035916 0.084447 0.163788 0.077126
 Igunga 0.09939 0.034739 0.043311 0.09537 0.1788 0.087986
 Ilala 0.056176 0.020741 0.022947 0.053745 0.10351 0.049148
 Ileje 0.038036 0.022948 0.008444 0.033351 0.09534 0.025397
 Ilemela 0.087587 0.0353 0.034481 0.082244 0.171355 0.072191
 Iramba 0.065334 0.026536 0.025059 0.061508 0.128181 0.054987
 Iringa Rural 0.089756 0.032837 0.04069 0.084593 0.168377 0.075208
 Iringa Urban 0.085199 0.044624 0.022765 0.077086 0.194331 0.061876
 Kahama 0.110448 0.03185 0.059255 0.106605 0.18314 0.098855
 Karagwe 0.042121 0.018663 0.013967 0.039419 0.086061 0.034483
 Karatu 0.060075 0.028797 0.0199 0.054853 0.131077 0.046278
 Kaskazini ‘A’ 0.116896 0.078634 0.019831 0.098334 0.320075 0.064446
 Kaskazini ‘B’ 0.073364 0.040634 0.020615 0.064997 0.176521 0.052438
 Kasulu 0.065958 0.029045 0.022496 0.061572 0.134699 0.053262
 Kati 0.07499 0.039878 0.022149 0.066944 0.175614 0.054246
 Kibaha 0.084618 0.039698 0.026705 0.078206 0.180446 0.067318
 Kibondo 0.046161 0.021507 0.014624 0.042817 0.097395 0.036894
 Kigoma Rural 0.078883 0.030973 0.03027 0.074919 0.150693 0.067803
 Kigoma Urban 0.225847 0.057116 0.124765 0.222295 0.347181 0.215
 Kilindi 0.155555 0.060643 0.068245 0.144661 0.302853 0.123713
 Kilolo 0.077967 0.034493 0.028029 0.072185 0.161754 0.06231
 Kilombero 0.119978 0.035403 0.06311 0.115653 0.201572 0.107605
 Kilosa 0.129224 0.033827 0.073949 0.12542 0.205768 0.117745
 Kilwa 0.162477 0.060397 0.068329 0.154281 0.303184 0.13828
 Kinondoni 0.087583 0.026503 0.043942 0.084796 0.147213 0.079407
 Kisarawe 0.21113 0.082673 0.083622 0.199415 0.404437 0.175685
 Kishapu 0.090416 0.028683 0.044903 0.086783 0.156562 0.079776
 Kiteto 0.134707 0.049804 0.053746 0.129259 0.247585 0.119235
 Kondoa 0.067965 0.02419 0.028576 0.065374 0.122738 0.060834
 Kongwa 0.180709 0.066789 0.07221 0.173222 0.331989 0.15839
 Korogwe 0.071336 0.03201 0.024234 0.06624 0.148168 0.057226
 Kusini 0.092483 0.079195 0.010846 0.069657 0.310113 0.036757
 Kwimba 0.083511 0.029469 0.037181 0.079655 0.152053 0.072557
 Kyela 0.052566 0.02595 0.014501 0.048516 0.114037 0.040496
 Lindi Rural 0.094528 0.038914 0.035467 0.088863 0.186384 0.078425
 Lindi Urban 0.082425 0.074563 0.00613 0.060829 0.285073 0.024564
 Liwale 0.081193 0.034997 0.030343 0.075399 0.166293 0.065878
 Ludewa 0.0646 0.029526 0.021459 0.059871 0.135686 0.051897
 Lushoto 0.134968 0.06455 0.043729 0.123168 0.292085 0.099453
 Mafia NA NA NA NA NA NA
 Magharibi 0.063107 0.031771 0.018615 0.057492 0.140931 0.048167
 Magu 0.100567 0.031313 0.05171 0.09628 0.173555 0.087969
 Makete 0.065017 0.030634 0.02176 0.05964 0.14007 0.050776
 Manyoni 0.061885 0.023697 0.024259 0.059097 0.116333 0.054484
 Masasi 0.078111 0.034816 0.028126 0.072093 0.162643 0.061025
 Maswa 0.108444 0.041911 0.047504 0.101226 0.2096 0.087304
 Mbarali 0.227149 0.056495 0.130459 0.222398 0.350241 0.212217
 Mbeya Rural 0.052231 0.023517 0.017635 0.048576 0.108419 0.042347
 Mbeya Urban 0.054634 0.030383 0.012569 0.049129 0.128642 0.038603
 Mbinga 0.06177 0.027725 0.020141 0.057654 0.12721 0.049833
 Mbozi 0.037029 0.019551 0.009416 0.033708 0.084127 0.027464
 Mbulu 0.073524 0.038334 0.022257 0.065844 0.170126 0.053574
 Meatu 0.060398 0.027398 0.021617 0.055534 0.127436 0.047049
 Micheweni 0.106287 0.070963 0.019278 0.089611 0.290222 0.060809
 Missungwi 0.064286 0.025384 0.026627 0.060256 0.125336 0.053236
 Mjini 0.057105 0.046535 0.006517 0.044838 0.180154 0.024833
 Mkoani 0.08658 0.061402 0.014056 0.07158 0.247133 0.046609
 Mkuranga 0.09811 0.041137 0.037494 0.091418 0.197063 0.079083
 Monduli 0.090703 0.035633 0.033981 0.086528 0.17198 0.078844
 Morogoro Rural 0.124807 0.043808 0.056178 0.118938 0.227576 0.108634
 Morogoro Urban 0.070508 0.041105 0.014273 0.062863 0.171118 0.048095
 Moshi Rural 0.076847 0.02875 0.03239 0.072881 0.144106 0.065472
 Moshi Urban 0.105684 0.063682 0.023583 0.091793 0.267687 0.066953
 Mpanda 0.088265 0.02989 0.040863 0.084476 0.157583 0.077614
 Mpwapwa 0.091513 0.031985 0.040818 0.087463 0.165561 0.079979
 Mtwara Rural 0.074234 0.036632 0.021466 0.068093 0.162431 0.056337
 Mtwara Urban 0.039085 0.035979 0.002934 0.028852 0.135244 0.011422
 Mufindi 0.073355 0.031954 0.026361 0.068213 0.15042 0.059419
 Muheza 0.100514 0.048269 0.03344 0.091388 0.219717 0.074827
 Muleba 0.045895 0.018884 0.01707 0.043272 0.090232 0.038756
 Musoma Rural 0.051797 0.025789 0.014758 0.047495 0.113938 0.03966
 Musoma Urban 0.042554 0.038002 0.003284 0.032073 0.143375 0.013593
 Mvomero 0.090427 0.040905 0.032314 0.083132 0.190925 0.070622
 Mwanga 0.063507 0.034216 0.015928 0.057351 0.147101 0.046369
 Nachingwea 0.069241 0.035583 0.020383 0.062545 0.157175 0.050984
 Namtumbo 0.076978 0.040271 0.02218 0.069233 0.177404 0.056455
 Newala 0.043334 0.025806 0.009525 0.038096 0.107778 0.028872
 Ngara 0.038154 0.02518 0.00732 0.032592 0.101987 0.023388
 Ngorongoro 0.16146 0.064201 0.062549 0.152414 0.311971 0.134847
 Njombe 0.119238 0.033404 0.064717 0.11551 0.194748 0.10797
 Nkasi 0.061314 0.033887 0.014469 0.05514 0.144126 0.043701
 Nyamagana 0.061473 0.049344 0.006583 0.048598 0.191516 0.026027
 Nzega 0.084301 0.029507 0.036095 0.081113 0.151095 0.075262
 Rombo 0.064643 0.040042 0.014031 0.055942 0.166466 0.041457
 Ruangwa 0.092625 0.046423 0.027134 0.084388 0.206272 0.069917
 Rufiji 0.17953 0.064478 0.077116 0.17141 0.328071 0.155462
 Rungwe 0.053291 0.023883 0.017966 0.049569 0.110317 0.042963
 Same 0.080934 0.0428 0.023753 0.072288 0.188527 0.057678
 Sengerema 0.089192 0.025964 0.047098 0.086194 0.148324 0.080394
 Serengeti 0.0534 0.025456 0.016814 0.049178 0.115023 0.042114
 Shinyanga Rural 0.086924 0.03111 0.037707 0.083009 0.159321 0.076433
 Shinyanga Urban 0.107723 0.070857 0.02376 0.089663 0.294683 0.060263
 Sikonge 0.125332 0.043218 0.053973 0.120928 0.222227 0.112595
 Simanjiro 0.082461 0.026396 0.039015 0.079739 0.142186 0.075199
 Singida Rural 0.039779 0.018302 0.012453 0.03709 0.082903 0.03215
 Singida Urban 0.037101 0.034594 0.002685 0.02736 0.129159 0.010993
 Songea Rural 0.109879 0.041357 0.049097 0.102993 0.210139 0.090941
 Songea Urban 0.068551 0.042092 0.01335 0.059892 0.173682 0.04323
 Sumbawanga Rural 0.054203 0.026289 0.016109 0.049931 0.117295 0.042193
 Sumbawanga Urban 0.076452 0.047216 0.016189 0.066131 0.196413 0.047871
 Tabora Urban 0.056579 0.037275 0.011113 0.048194 0.15191 0.034664
 Tandahimba 0.044097 0.02691 0.009249 0.038531 0.11147 0.028638
 Tanga 0.041107 0.029474 0.005355 0.034308 0.116148 0.020836
 Tarime 0.102142 0.036448 0.047715 0.096341 0.188784 0.084803
 Temeke 0.065563 0.025048 0.026053 0.06243 0.123188 0.056416
 Tunduru 0.07154 0.033423 0.023031 0.065996 0.152274 0.056117
 Ukerewe 0.057614 0.025554 0.021499 0.053123 0.120394 0.046
 Ulanga 0.147958 0.057004 0.060111 0.139892 0.281558 0.124146
 Urambo 0.117271 0.04103 0.051875 0.112219 0.212311 0.103386
 Uyui 0.163219 0.037328 0.09924 0.160062 0.245045 0.153703
 Wete 0.081566 0.046461 0.022554 0.071585 0.200691 0.056751
KENYA
 Baringo 0.240878 0.054383 0.144752 0.237329 0.357091 0.230062
 Bomet 0.074298 0.021292 0.038257 0.072378 0.121435 0.068744
 Bungoma 0.044318 0.013862 0.020895 0.043098 0.074839 0.040761
 Busia 0.109215 0.037833 0.048304 0.104748 0.195904 0.096441
 Embu 0.052192 0.020115 0.021145 0.049416 0.099348 0.04442
 Garissa 0.174919 0.058345 0.077717 0.169158 0.30511 0.157844
 Homa Bay 0.121284 0.028322 0.072783 0.118894 0.183344 0.114124
 Isiolo 0.184606 0.064146 0.0782 0.178157 0.32795 0.165427
 Kajiado 0.062478 0.023385 0.026318 0.059254 0.117276 0.05338
 Kakamega 0.073914 0.021253 0.037918 0.072007 0.120927 0.0684
 Keiyo-Marakwet 0.085423 0.031907 0.036025 0.081026 0.16025 0.073039
 Kericho 0.143753 0.046134 0.07013 0.138027 0.249831 0.12684
 Kiambu 0.032065 0.011994 0.013079 0.030578 0.059674 0.027807
 Kilifi 0.211694 0.034222 0.149241 0.210117 0.283104 0.206938
 Kirinyaga 0.054381 0.022489 0.020889 0.050896 0.108097 0.044681
 Kisii 0.111926 0.025299 0.068265 0.109908 0.167092 0.10592
 Kisumu 0.116235 0.024134 0.073953 0.11452 0.168285 0.111125
 Kitui 0.079004 0.024178 0.038306 0.076769 0.132635 0.072523
 Kwale 0.20927 0.057402 0.112946 0.203739 0.336636 0.19239
 Laikipia 0.143366 0.036594 0.081411 0.140065 0.223988 0.133355
 Lamu 0.069575 0.032823 0.024521 0.063373 0.15126 0.053435
 Machakos 0.028128 0.012045 0.009587 0.026509 0.056107 0.023427
 Makueni 0.060502 0.021534 0.025652 0.058071 0.109455 0.053545
 Mandera 0.25923 0.069665 0.134861 0.255266 0.406168 0.247056
 Marsabit 0.181116 0.066258 0.072181 0.174216 0.329386 0.160218
 Meru 0.088279 0.024018 0.04854 0.085798 0.142115 0.080867
 Migori 0.160352 0.041866 0.090546 0.156207 0.253295 0.147457
 Mombasa 0.083335 0.028039 0.038232 0.080052 0.147271 0.073709
 Murang’a 0.039553 0.015458 0.015478 0.03751 0.075493 0.03378
 Nairobi 0.042442 0.009839 0.025189 0.041757 0.063646 0.04044
 Nakuru 0.089081 0.016623 0.059299 0.088118 0.124396 0.086253
 Nandi 0.097144 0.022557 0.057767 0.095497 0.145967 0.092319
 Narok 0.155751 0.042826 0.082072 0.15228 0.249292 0.14548
 Nyamira 0.090285 0.028964 0.041713 0.087567 0.154558 0.082338
 Nyandarua 0.046398 0.019806 0.016646 0.043449 0.093361 0.038305
 Nyeri 0.027712 0.012907 0.008717 0.025693 0.05846 0.021992
 Samburu 0.227697 0.079968 0.098865 0.21818 0.410298 0.199088
 Siaya 0.10215 0.024268 0.060422 0.100156 0.155278 0.096272
 Taita Taveta 0.08037 0.035498 0.030385 0.073912 0.167933 0.062966
 Tana River 0.196576 0.063559 0.093364 0.189283 0.341061 0.174739
 Tharaka 0.051207 0.02249 0.018089 0.04764 0.105138 0.041395
 Trans Nzoia 0.105247 0.028753 0.057245 0.102405 0.169499 0.096891
 Turkana 0.194557 0.060246 0.091432 0.189604 0.325898 0.179562
 Uasin Gishu 0.079448 0.028699 0.035927 0.075171 0.147412 0.06716
 Vihiga 0.078771 0.032048 0.030665 0.073906 0.155337 0.065583
 Wajir 0.272639 0.072123 0.146146 0.26767 0.427082 0.257251
 West Pokot 0.135679 0.048794 0.056064 0.130346 0.246119 0.12027
UGANDA
 Adjumani 0.11311 0.037516 0.051424 0.109203 0.197941 0.102443
 Amolatar 0.225593 0.050985 0.140214 0.220321 0.341249 0.21086
 Amuria 0.238159 0.047934 0.15406 0.234663 0.342126 0.227809
 Apac 0.213819 0.031924 0.156157 0.212086 0.281308 0.208619
 Arua 0.112182 0.027018 0.063934 0.110643 0.169457 0.10775
 Bugiri 0.231211 0.038607 0.162263 0.228814 0.313641 0.224012
 Bukwa 0.219408 0.068517 0.104826 0.212605 0.37284 0.199432
 Bundibugyo 0.13266 0.043817 0.068718 0.125093 0.239329 0.111658
 Bushenyi 0.065164 0.016434 0.03603 0.064204 0.100034 0.062452
 Busia 0.219604 0.06537 0.109455 0.213315 0.365754 0.20134
 Butaleja 0.243775 0.043882 0.166445 0.24064 0.338797 0.23447
 Gulu 0.159808 0.02954 0.108047 0.157633 0.223996 0.153486
 Hoima 0.202098 0.045815 0.126472 0.197141 0.304882 0.186595
 Ibanda 0.0956 0.027404 0.048608 0.093363 0.155774 0.089388
 Iganga 0.191756 0.030817 0.13686 0.189777 0.257882 0.18591
 Isingiro 0.09311 0.02492 0.050051 0.091152 0.147679 0.087671
 Jinja 0.159497 0.032614 0.103422 0.156725 0.231304 0.151341
 Kaabong 0.13543 0.048419 0.057197 0.129908 0.245323 0.119069
 Kabale 0.059933 0.01985 0.027278 0.057891 0.10452 0.05412
 Kabarole 0.111862 0.026323 0.065959 0.109856 0.169522 0.106336
 Kaberamaido 0.230658 0.044828 0.153824 0.226718 0.329465 0.218824
 Kalangala 0.191447 0.052386 0.1105 0.183805 0.314772 0.169106
 Kaliro 0.197438 0.052164 0.107629 0.193003 0.312905 0.184989
 Kampala 0.100763 0.016339 0.071005 0.09998 0.135013 0.098459
 Kamuli 0.174873 0.030359 0.118624 0.173723 0.23779 0.171576
 Kamwenge 0.109061 0.026309 0.064308 0.106684 0.167686 0.102458
 Kanungu 0.077251 0.027024 0.033861 0.074074 0.139044 0.068189
 Kapchorwa 0.183861 0.050881 0.095939 0.179793 0.295685 0.172536
 Kasese 0.095043 0.021976 0.057022 0.093279 0.143265 0.090014
 Katakwi 0.206128 0.051711 0.115466 0.20234 0.319273 0.195859
 Kayunga 0.173521 0.033484 0.114935 0.170923 0.247056 0.166224
 Kibaale 0.135695 0.023504 0.093578 0.134279 0.185924 0.131578
 Kiboga 0.148229 0.032892 0.093701 0.144699 0.222909 0.138206
 Kiruhura 0.102256 0.031887 0.051447 0.098326 0.175927 0.091278
 Kisoro 0.06841 0.026891 0.026763 0.064771 0.131201 0.058109
 Kitgum 0.114999 0.037898 0.051325 0.111568 0.199334 0.105807
 Koboko 0.089404 0.038708 0.030882 0.08382 0.180833 0.074022
 Kotido 0.128391 0.033553 0.070057 0.125901 0.201011 0.121016
 Kumi 0.168732 0.030438 0.112402 0.167585 0.231747 0.165449
 Kyenjojo 0.117239 0.024688 0.072818 0.115839 0.169915 0.113387
 Lira 0.171492 0.032232 0.116239 0.168666 0.242678 0.163165
 Luweero 0.134339 0.02803 0.084665 0.132431 0.195078 0.129013
 Manafwa 0.165088 0.042104 0.090906 0.162242 0.255736 0.156845
 Masaka 0.135582 0.028793 0.086288 0.133073 0.199104 0.128183
 Masindi 0.16548 0.027297 0.117305 0.163553 0.224586 0.159836
 Mayuge 0.23409 0.050814 0.146076 0.229909 0.345818 0.221896
 Mbale 0.164225 0.035585 0.102562 0.161349 0.242471 0.156037
 Mbarara 0.057829 0.01808 0.027105 0.056364 0.097351 0.053811
 Mityana 0.131343 0.029062 0.079916 0.129349 0.19444 0.12588
 Moroto 0.162426 0.053144 0.075508 0.156686 0.281999 0.145115
 Moyo 0.086994 0.042507 0.025361 0.080113 0.189049 0.067849
 Mpigi 0.158659 0.032219 0.102937 0.156043 0.229332 0.151032
 Mubende 0.120171 0.025597 0.073614 0.118922 0.174137 0.116754
 Mukono 0.151077 0.024578 0.107426 0.149451 0.203995 0.146319
 Nakapiripirit 0.16346 0.039934 0.094645 0.160235 0.250693 0.153917
 Nakaseke 0.161878 0.040869 0.092914 0.157973 0.253598 0.151006
 Nakasongola 0.13504 0.031366 0.080687 0.132483 0.204359 0.128063
 Nebbi 0.134151 0.031345 0.079337 0.131836 0.202307 0.127506
 Ntungamo 0.068901 0.020033 0.034236 0.067474 0.11206 0.064857
 Pader 0.165599 0.038104 0.096614 0.163632 0.246259 0.160209
 Pallisa 0.228123 0.03459 0.166691 0.225832 0.302438 0.221251
 Rakai 0.155973 0.03306 0.100209 0.152801 0.229606 0.146554
 Rukungiri 0.053825 0.019062 0.022763 0.05183 0.096638 0.048135
 Sembabule 0.12082 0.030583 0.069114 0.117959 0.18917 0.112849
 Sironko 0.14112 0.035489 0.078046 0.138931 0.217349 0.135243
 Soroti 0.197322 0.039985 0.12383 0.195579 0.281111 0.192532
 Tororo 0.20023 0.039523 0.129513 0.19783 0.284652 0.193218
 Wakiso 0.100557 0.016272 0.070805 0.099806 0.134632 0.098363
 Yumbe 0.122695 0.037781 0.058724 0.119337 0.206169 0.11303

Table 4.

Uncertainty parameters for INLA approximations at 16 to 17 years old, by country

Mean SD 2.5 % quantile 50 % quantile 97.5 % quantile Mode
TANZANIA
 Aru Meru 0.196509 0.037348 0.125533 0.19601 0.272189 0.196361
 Arusha 0.133765 0.042022 0.060398 0.131161 0.223349 0.126908
 Babati 0.207838 0.034687 0.140043 0.208022 0.277337 0.21001
 Bagamoyo 0.26831 0.03743 0.201949 0.265362 0.350468 0.259738
 Bariadi 0.280316 0.035745 0.21612 0.27794 0.357424 0.273262
 Biharamulo 0.274124 0.034984 0.209486 0.272433 0.348281 0.269328
 Bukoba Rural 0.257286 0.041986 0.178739 0.255629 0.345618 0.252866
 Bukombe 0.288836 0.040081 0.217337 0.285867 0.376504 0.280343
 Bunda 0.285901 0.044351 0.209322 0.28172 0.38443 0.273384
 Chake 0.243117 0.048247 0.157906 0.239178 0.351236 0.233095
 Chunya 0.23003 0.031322 0.168578 0.230032 0.293035 0.230948
 Dodoma Rural 0.269781 0.038891 0.19592 0.268835 0.34958 0.267424
 Dodoma Urban 0.195712 0.053961 0.097036 0.193869 0.307643 0.192273
 Geita 0.295699 0.035165 0.229186 0.294592 0.368518 0.292567
 Hai 0.199233 0.039333 0.12587 0.198075 0.280261 0.196593
 Hanang 0.202052 0.038051 0.127773 0.202592 0.27672 0.206117
 Handeni 0.250436 0.039705 0.179614 0.247617 0.337187 0.242567
 Igunga 0.300037 0.042392 0.22374 0.297364 0.391368 0.292332
 Ilala 0.20593 0.032415 0.144661 0.205089 0.272316 0.20372
 Ileje 0.188653 0.041386 0.111773 0.187384 0.275074 0.186494
 Ilemela 0.231754 0.042486 0.157721 0.228323 0.324979 0.221678
 Iramba 0.222817 0.035408 0.15464 0.222398 0.294765 0.222506
 Iringa Rural 0.221798 0.034556 0.158664 0.219992 0.295582 0.216921
 Iringa Urban 0.157236 0.043423 0.077981 0.155894 0.247113 0.15554
 Kahama 0.276106 0.034467 0.214671 0.273618 0.350837 0.268631
 Karagwe 0.23927 0.036606 0.169041 0.238612 0.314021 0.23789
 Karatu 0.208322 0.038773 0.136067 0.206894 0.290023 0.205138
 Kaskazini ‘A’ 0.244126 0.069652 0.119378 0.240021 0.396207 0.234965
 Kaskazini ‘B’ 0.236907 0.045793 0.153483 0.234183 0.337319 0.230496
 Kasulu 0.179143 0.039956 0.103977 0.178661 0.25903 0.179427
 Kati 0.241886 0.046725 0.158248 0.238605 0.344937 0.233502
 Kibaha 0.266113 0.047097 0.184018 0.261764 0.371875 0.254185
 Kibondo 0.215485 0.037535 0.143165 0.215245 0.290956 0.215982
 Kigoma Rural 0.235916 0.038157 0.162074 0.235618 0.313198 0.23614
 Kigoma Urban 0.233238 0.048968 0.145814 0.230205 0.337843 0.224192
 Kilindi 0.257961 0.04029 0.182387 0.256342 0.343599 0.254078
 Kilolo 0.240477 0.042785 0.165591 0.237008 0.33512 0.230866
 Kilombero 0.269854 0.034629 0.207868 0.267456 0.344997 0.26288
 Kilosa 0.265969 0.032926 0.209172 0.262891 0.33872 0.256459
 Kilwa 0.332065 0.053337 0.232679 0.329867 0.443959 0.325801
 Kinondoni 0.241881 0.035433 0.179091 0.239426 0.318095 0.234315
 Kisarawe 0.354954 0.061949 0.239323 0.352682 0.483564 0.348349
 Kishapu 0.225676 0.032372 0.166581 0.223908 0.294896 0.220723
 Kiteto 0.308573 0.046995 0.219653 0.30719 0.405962 0.305024
 Kondoa 0.229844 0.032321 0.166031 0.23014 0.293766 0.231818
 Kongwa 0.386599 0.065492 0.273332 0.380932 0.52921 0.36811
 Korogwe 0.211879 0.039837 0.137028 0.210726 0.295 0.209685
 Kusini 0.244388 0.076257 0.118422 0.235487 0.422577 0.22195
 Kwimba 0.247029 0.036497 0.180037 0.24514 0.324938 0.241831
 Kyela 0.259327 0.045268 0.176849 0.256989 0.355256 0.252633
 Lindi Rural 0.300043 0.047873 0.211565 0.297892 0.400896 0.293942
 Lindi Urban 0.237292 0.081907 0.097112 0.230343 0.420801 0.219958
 Liwale 0.288745 0.047066 0.210112 0.283453 0.394958 0.27266
 Ludewa 0.222916 0.038856 0.148692 0.22215 0.3031 0.221723
 Lushoto 0.191085 0.047511 0.102741 0.190127 0.288144 0.190734
 Mafia NA NA NA NA NA NA
 Magharibi 0.223738 0.042254 0.149528 0.220176 0.318467 0.214522
 Magu 0.236964 0.031192 0.177243 0.236218 0.301384 0.235156
 Makete 0.182905 0.035085 0.11731 0.181854 0.256196 0.181015
 Manyoni 0.224272 0.031517 0.163664 0.223624 0.290071 0.223313
 Masasi 0.249642 0.04572 0.168875 0.246394 0.348746 0.240091
 Maswa 0.201219 0.034891 0.132557 0.201667 0.269704 0.204099
 Mbarali 0.27185 0.043815 0.186819 0.271914 0.357674 0.273
 Mbeya Rural 0.202081 0.035117 0.13483 0.201675 0.273414 0.202085
 Mbeya Urban 0.193593 0.043258 0.115444 0.191235 0.286375 0.18766
 Mbinga 0.25205 0.04487 0.171092 0.249409 0.347874 0.244286
 Mbozi 0.201996 0.037507 0.134538 0.199592 0.283949 0.195866
 Mbulu 0.194358 0.041119 0.115145 0.194579 0.276277 0.197773
 Meatu 0.198127 0.038824 0.126864 0.196496 0.279111 0.193623
 Micheweni 0.261553 0.06763 0.140521 0.257069 0.411278 0.251247
 Missungwi 0.211674 0.034433 0.145554 0.211159 0.281565 0.210773
 Mjini 0.22895 0.068146 0.118833 0.220075 0.388887 0.205207
 Mkoani 0.253887 0.067586 0.137631 0.247408 0.408209 0.237699
 Mkuranga 0.238666 0.043086 0.155985 0.238 0.326764 0.237776
 Monduli 0.226989 0.039706 0.149489 0.227488 0.304064 0.230584
 Morogoro Rural 0.310657 0.042959 0.233688 0.307611 0.404152 0.301802
 Morogoro Urban 0.308678 0.067421 0.198209 0.30056 0.460218 0.281852
 Moshi Rural 0.161898 0.032192 0.100926 0.161585 0.226233 0.162294
 Moshi Urban 0.176943 0.050366 0.089399 0.173235 0.288652 0.168377
 Mpanda 0.238624 0.034022 0.172744 0.238252 0.308008 0.23838
 Mpwapwa 0.251599 0.037727 0.18373 0.249057 0.333741 0.244522
 Mtwara Rural 0.25288 0.052499 0.154304 0.251502 0.360272 0.249504
 Mtwara Urban 0.176684 0.060687 0.07318 0.171737 0.310283 0.163507
 Mufindi 0.220957 0.038654 0.150476 0.218817 0.304362 0.215472
 Muheza 0.218341 0.045249 0.135946 0.215977 0.315635 0.212621
 Muleba 0.264975 0.038474 0.198306 0.261558 0.350241 0.255005
 Musoma Rural 0.310468 0.054925 0.217471 0.305154 0.431082 0.292644
 Musoma Urban 0.280474 0.075826 0.152574 0.272539 0.451048 0.25687
 Mvomero 0.265121 0.047086 0.1836 0.260804 0.370123 0.25279
 Mwanga 0.19923 0.043155 0.121276 0.196747 0.293177 0.193463
 Nachingwea 0.295656 0.058257 0.197968 0.289581 0.42591 0.276892
 Namtumbo 0.295401 0.058444 0.20061 0.287838 0.428844 0.271808
 Newala 0.257576 0.053883 0.166236 0.252223 0.378209 0.241749
 Ngara 0.222475 0.048966 0.132231 0.2204 0.326721 0.218
 Ngorongoro 0.281995 0.055274 0.175516 0.281749 0.391677 0.282641
 Njombe 0.203965 0.030988 0.143162 0.20426 0.26448 0.205881
 Nkasi 0.232013 0.048542 0.141767 0.2302 0.334771 0.228222
 Nyamagana 0.209599 0.065731 0.097889 0.203408 0.357919 0.193147
 Nzega 0.296275 0.040798 0.224255 0.293089 0.385367 0.286743
 Rombo 0.184824 0.047905 0.097631 0.182973 0.285125 0.181202
 Ruangwa 0.30852 0.056267 0.207834 0.304531 0.431385 0.297245
 Rufiji 0.311661 0.052857 0.210944 0.310516 0.419432 0.308709
 Rungwe 0.20817 0.036833 0.138726 0.207191 0.284286 0.206083
 Same 0.215007 0.046861 0.132468 0.211508 0.318576 0.205941
 Sengerema 0.273206 0.033236 0.213188 0.271143 0.344401 0.266978
 Serengeti 0.277872 0.047463 0.198734 0.272467 0.385394 0.261753
 Shinyanga Rural 0.279379 0.037031 0.211514 0.277258 0.359297 0.27362
 Shinyanga Urban 0.27475 0.072233 0.163286 0.263313 0.445253 0.241125
 Sikonge 0.327621 0.04698 0.241454 0.325304 0.427039 0.320965
 Simanjiro 0.212701 0.029266 0.154675 0.213265 0.269442 0.215746
 Singida Rural 0.198857 0.033611 0.135167 0.198073 0.268006 0.197276
 Singida Urban 0.240093 0.071055 0.125583 0.230718 0.40549 0.213582
 Songea Rural 0.251444 0.037836 0.184815 0.248301 0.335304 0.24264
 Songea Urban 0.265447 0.06621 0.1552 0.258286 0.413625 0.24286
 Sumbawanga Rural 0.227018 0.041357 0.149743 0.225598 0.3138 0.223875
 Sumbawanga Urban 0.184311 0.050529 0.092549 0.182351 0.290738 0.18099
 Tabora Urban 0.201293 0.049602 0.115828 0.196834 0.313517 0.190086
 Tandahimba 0.240206 0.05097 0.148492 0.237078 0.350376 0.231754
 Tanga 0.174723 0.049256 0.087782 0.171509 0.280986 0.166053
 Tarime 0.275796 0.038902 0.208854 0.27217 0.361716 0.264563
 Temeke 0.24118 0.039602 0.169652 0.238943 0.325245 0.234483
 Tunduru 0.32394 0.060874 0.224239 0.316972 0.458465 0.297535
 Ukerewe 0.254646 0.041224 0.183826 0.250775 0.34669 0.243471
 Ulanga 0.284495 0.05023 0.195087 0.280764 0.394548 0.27392
 Urambo 0.299555 0.041115 0.221655 0.298291 0.385179 0.296344
 Uyui 0.309569 0.035275 0.242862 0.3086 0.381878 0.306778
 Wete 0.240304 0.047343 0.152984 0.237901 0.343737 0.235273
KENYA
 Baringo 0.280847 0.04762 0.194049 0.278468 0.381173 0.273821
 Bomet 0.154695 0.029074 0.099997 0.15411 0.213329 0.153406
 Bungoma 0.226183 0.029655 0.172687 0.224565 0.288623 0.221112
 Busia 0.251005 0.047861 0.168039 0.24696 0.356639 0.239223
 Embu 0.16401 0.032839 0.105113 0.162015 0.234561 0.158468
 Garissa 0.186178 0.046071 0.107778 0.181986 0.288814 0.174287
 Homa Bay 0.257432 0.038098 0.190352 0.254843 0.338476 0.248788
 Isiolo 0.20238 0.050699 0.111965 0.199328 0.310853 0.193886
 Kajiado 0.169426 0.037165 0.108594 0.165161 0.2537 0.156486
 Kakamega 0.184479 0.030161 0.127661 0.183689 0.246092 0.18238
 Keiyo-Marakwet 0.187146 0.040869 0.110663 0.186114 0.270778 0.185035
 Kericho 0.222246 0.04376 0.144106 0.219377 0.316989 0.214217
 Kiambu 0.139956 0.024961 0.095689 0.138308 0.193589 0.135105
 Kilifi 0.165524 0.026199 0.117482 0.16434 0.220356 0.162073
 Kirinyaga 0.170843 0.036569 0.105642 0.16852 0.249576 0.164356
 Kisii 0.164906 0.0263 0.115552 0.164135 0.218876 0.162807
 Kisumu 0.197797 0.027285 0.148154 0.196414 0.255254 0.193661
 Kitui 0.20501 0.034809 0.139341 0.204165 0.275859 0.202785
 Kwale 0.202566 0.041888 0.12835 0.199653 0.293649 0.194419
 Laikipia 0.143303 0.029133 0.092338 0.141125 0.206731 0.136993
 Lamu 0.148656 0.037662 0.084011 0.145374 0.233092 0.140249
 Machakos 0.133579 0.025963 0.086879 0.132086 0.188925 0.129323
 Makueni 0.189024 0.035255 0.122924 0.188048 0.261203 0.186529
 Mandera 0.216108 0.052223 0.124273 0.212502 0.328541 0.205404
 Marsabit 0.185643 0.051589 0.096705 0.18151 0.298419 0.173656
 Meru 0.133552 0.024667 0.088093 0.132544 0.18496 0.130764
 Migori 0.25658 0.042892 0.182426 0.253011 0.350088 0.245338
 Mombasa 0.120001 0.029099 0.070998 0.117209 0.184919 0.111838
 Murang’a 0.138139 0.027697 0.087983 0.136667 0.196917 0.134041
 Nairobi 0.079662 0.013225 0.055489 0.079067 0.107241 0.077901
 Nakuru 0.226384 0.023992 0.181688 0.225554 0.275766 0.22388
 Nandi 0.200027 0.02865 0.14611 0.199223 0.258634 0.19774
 Narok 0.268461 0.045691 0.184903 0.266249 0.364675 0.262019
 Nyamira 0.239471 0.040536 0.163534 0.238237 0.322634 0.235976
 Nyandarua 0.144239 0.032221 0.087981 0.141718 0.215341 0.137437
 Nyeri 0.109217 0.026222 0.062302 0.107723 0.165022 0.105092
 Samburu 0.169876 0.047541 0.091843 0.164586 0.27862 0.155232
 Siaya 0.241909 0.033918 0.181333 0.239823 0.313943 0.235346
 Taita Taveta 0.140577 0.036839 0.081648 0.135836 0.226791 0.127791
 Tana River 0.230908 0.049846 0.141086 0.227987 0.337919 0.222947
 Tharaka 0.165256 0.037629 0.09728 0.163247 0.24534 0.159941
 Trans Nzoia 0.18405 0.031788 0.126529 0.182279 0.251775 0.178977
 Turkana 0.209598 0.050717 0.120595 0.206017 0.319146 0.199059
 Uasin Gishu 0.174314 0.036557 0.113315 0.170483 0.256701 0.163044
 Vihiga 0.18573 0.040564 0.114522 0.182588 0.275562 0.177464
 Wajir 0.172051 0.045473 0.093623 0.168385 0.271562 0.161383
 West Pokot 0.295851 0.058226 0.195713 0.290656 0.424829 0.280531
UGANDA
 Adjumani 0.175812 0.041541 0.099922 0.174042 0.263253 0.171772
 Amolatar 0.295131 0.046315 0.211452 0.292174 0.395651 0.286955
 Amuria 0.288093 0.044457 0.206507 0.285951 0.381948 0.281909
 Apac 0.306544 0.034361 0.244056 0.304774 0.378765 0.301019
 Arua 0.19952 0.033153 0.136504 0.198907 0.266451 0.198044
 Bugiri 0.25021 0.034443 0.185703 0.249011 0.321731 0.246882
 Bukwa 0.294421 0.066648 0.176195 0.289679 0.439674 0.280915
 Bundibugyo 0.16406 0.036443 0.101364 0.160862 0.245772 0.15568
 Bushenyi 0.16965 0.025727 0.120518 0.169254 0.221428 0.1688
 Busia 0.262334 0.059642 0.152111 0.25981 0.388269 0.256005
 Butaleja 0.266473 0.038351 0.19279 0.265772 0.344559 0.264765
 Gulu 0.204569 0.028873 0.151185 0.203352 0.26502 0.201141
 Hoima 0.275879 0.042515 0.200089 0.272968 0.367963 0.26741
 Ibanda 0.193311 0.036343 0.125572 0.192067 0.268872 0.190251
 Iganga 0.241874 0.030088 0.186977 0.240286 0.305747 0.237264
 Isingiro 0.21005 0.03524 0.14482 0.20858 0.284098 0.206125
 Jinja 0.162851 0.02783 0.110566 0.162001 0.220356 0.160706
 Kaabong 0.279691 0.062994 0.164758 0.276797 0.411265 0.27113
 Kabale 0.131677 0.02886 0.079616 0.130185 0.192783 0.127738
 Kabarole 0.235756 0.037167 0.172085 0.232288 0.318662 0.225709
 Kaberamaido 0.255666 0.038436 0.186158 0.253376 0.338193 0.249129
 Kalangala 0.240683 0.044053 0.155996 0.240023 0.330082 0.23946
 Kaliro 0.322879 0.05758 0.222808 0.317877 0.450392 0.308308
 Kampala 0.1463 0.018959 0.11143 0.1455 0.185736 0.143918
 Kamuli 0.3072 0.035382 0.241909 0.305667 0.381029 0.302551
 Kamwenge 0.173837 0.029778 0.118489 0.172718 0.236122 0.171021
 Kanungu 0.142153 0.035235 0.078944 0.140306 0.216483 0.137125
 Kapchorwa 0.319496 0.05916 0.217524 0.314155 0.450912 0.303845
 Kasese 0.184621 0.028732 0.132596 0.183003 0.245948 0.180036
 Katakwi 0.281408 0.04986 0.190007 0.278786 0.388244 0.27439
 Kayunga 0.269708 0.039045 0.204397 0.265476 0.35745 0.25668
 Kibaale 0.202331 0.026128 0.151897 0.202004 0.254917 0.201603
 Kiboga 0.202935 0.03393 0.136021 0.2032 0.269622 0.204569
 Kiruhura 0.211759 0.043965 0.131228 0.209828 0.303797 0.206495
 Kisoro 0.123258 0.037053 0.058134 0.121115 0.201379 0.117167
 Kitgum 0.201121 0.045228 0.124454 0.196633 0.303879 0.189183
 Koboko 0.144704 0.044489 0.067925 0.141412 0.242108 0.136499
 Kotido 0.289505 0.0463 0.204752 0.287421 0.386064 0.283234
 Kumi 0.211406 0.030656 0.152514 0.211001 0.272906 0.210465
 Kyenjojo 0.231953 0.031623 0.171953 0.231083 0.297183 0.22967
 Lira 0.224915 0.031784 0.168933 0.22252 0.294243 0.217902
 Luweero 0.208878 0.03155 0.153184 0.206488 0.278046 0.202092
 Manafwa 0.309145 0.050949 0.217306 0.306168 0.417667 0.300246
 Masaka 0.17718 0.028633 0.124735 0.175766 0.237857 0.173266
 Masindi 0.241684 0.028528 0.188356 0.240582 0.301269 0.238533
 Mayuge 0.262007 0.044323 0.177198 0.261046 0.353025 0.259783
 Mbale 0.186578 0.032558 0.124482 0.18597 0.252858 0.185356
 Mbarara 0.13194 0.026732 0.082436 0.131008 0.187587 0.129857
 Mityana 0.231824 0.035 0.169826 0.229204 0.308549 0.224418
 Moroto 0.290668 0.063144 0.176012 0.287654 0.422413 0.28145
 Moyo 0.167603 0.055279 0.072914 0.163252 0.289476 0.15663
 Mpigi 0.28604 0.039039 0.21629 0.283549 0.369626 0.278494
 Mubende 0.303667 0.041597 0.232332 0.299981 0.394476 0.291517
 Mukono 0.202176 0.025175 0.153827 0.201733 0.253242 0.201042
 Nakapiripirit 0.256112 0.044342 0.17519 0.254006 0.349129 0.249915
 Nakaseke 0.26777 0.045475 0.181674 0.266392 0.36197 0.264083
 Nakasongola 0.217111 0.036363 0.15506 0.213594 0.298868 0.207214
 Nebbi 0.231648 0.038219 0.164597 0.228737 0.315013 0.223072
 Ntungamo 0.182579 0.030895 0.125081 0.181482 0.246825 0.179781
 Pader 0.308002 0.046204 0.226472 0.304571 0.408495 0.297776
 Pallisa 0.277776 0.033357 0.218338 0.27554 0.349563 0.271031
 Rakai 0.222688 0.033674 0.158241 0.222082 0.290931 0.221214
 Rukungiri 0.114588 0.027047 0.06602 0.113188 0.171923 0.111077
 Sembabule 0.27527 0.044699 0.197381 0.271669 0.373551 0.264871
 Sironko 0.226162 0.039114 0.155244 0.223879 0.310571 0.220066
 Soroti 0.288031 0.041096 0.212374 0.286052 0.375039 0.28243
 Tororo 0.202915 0.034988 0.136224 0.202294 0.273764 0.201609
 Wakiso 0.143636 0.018127 0.109687 0.14306 0.180902 0.141975
 Yumbe 0.203297 0.045624 0.118157 0.2021 0.296335 0.200578

Table 5.

Uncertainty parameters for INLA approximations at 18 to 19 years old, by country

Mean SD 2.5 % quantile 50 % quantile 97.5 % quantile Mode
TANZANIA
 Aru Meru 0.31247 0.04528 0.222446 0.312955 0.402359 0.315313
 Arusha 0.320957 0.047781 0.231205 0.319149 0.421037 0.315945
 Babati 0.320572 0.048529 0.223845 0.320907 0.418848 0.323048
 Bagamoyo 0.322634 0.044197 0.239555 0.320698 0.416905 0.317673
 Bariadi 0.35789 0.041725 0.275859 0.357644 0.441946 0.357564
 Biharamulo 0.389236 0.050479 0.303231 0.384839 0.496441 0.369746
 Bukoba Rural 0.308505 0.045326 0.217004 0.310255 0.393956 0.31657
 Bukombe 0.33162 0.045099 0.242138 0.331723 0.422221 0.332768
 Bunda 0.351332 0.050213 0.262914 0.346745 0.462399 0.337548
 Chake 0.324251 0.053485 0.218542 0.324267 0.433279 0.3259
 Chunya 0.342701 0.048369 0.255487 0.339026 0.448738 0.33213
 Dodoma Rural 0.300551 0.04737 0.206123 0.301682 0.39133 0.305947
 Dodoma Urban 0.303218 0.047093 0.213784 0.301634 0.402504 0.29945
 Geita 0.357681 0.047054 0.276189 0.35363 0.459232 0.343455
 Hai 0.305844 0.050641 0.207209 0.305622 0.407671 0.306414
 Hanang 0.349456 0.051234 0.249382 0.348572 0.456064 0.347888
 Handeni 0.280844 0.042624 0.199411 0.279724 0.36971 0.278393
 Igunga 0.323477 0.049457 0.224879 0.324255 0.41992 0.327118
 Ilala 0.293633 0.038309 0.219933 0.293033 0.371193 0.292218
 Ileje 0.407668 0.059398 0.293701 0.405634 0.532622 0.402045
 Ilemela 0.319438 0.04771 0.229694 0.3176 0.419568 0.31432
 Iramba 0.392154 0.053863 0.287441 0.391054 0.503802 0.389579
 Iringa Rural 0.324951 0.050746 0.223151 0.326226 0.422677 0.330652
 Iringa Urban 0.322841 0.050985 0.226457 0.321032 0.430003 0.318166
 Kahama 0.334012 0.039984 0.25555 0.33375 0.414748 0.333716
 Karagwe 0.307798 0.043936 0.219384 0.30955 0.389734 0.316306
 Karatu 0.323795 0.055457 0.211828 0.325785 0.429553 0.332663
 Kaskazini ‘A’ 0.314255 0.055755 0.209951 0.311748 0.434068 0.308302
 Kaskazini ‘B’ 0.341842 0.05688 0.230927 0.340914 0.460589 0.340613
 Kasulu 0.33411 0.043105 0.248217 0.33455 0.419379 0.336419
 Kati 0.330826 0.055642 0.221973 0.330352 0.445166 0.330902
 Kibaha 0.32074 0.051772 0.22628 0.317154 0.435055 0.311698
 Kibondo 0.411865 0.054861 0.309771 0.408951 0.529052 0.403384
 Kigoma Rural 0.317088 0.046603 0.223192 0.318162 0.408419 0.321884
 Kigoma Urban 0.307188 0.044843 0.226339 0.304423 0.402968 0.298678
 Kilindi 0.35754 0.053155 0.256236 0.355552 0.471022 0.352956
 Kilolo 0.332595 0.055284 0.224074 0.332463 0.444504 0.333633
 Kilombero 0.309342 0.044935 0.22539 0.307265 0.40531 0.303885
 Kilosa 0.330452 0.040008 0.252616 0.329843 0.412494 0.329201
 Kilwa 0.309914 0.051907 0.213165 0.307594 0.420529 0.30395
 Kinondoni 0.25156 0.038762 0.176207 0.251968 0.326002 0.254319
 Kisarawe 0.232913 0.051773 0.13918 0.230108 0.344195 0.225937
 Kishapu 0.3899 0.043871 0.306936 0.388367 0.481093 0.38529
 Kiteto 0.301865 0.053485 0.206668 0.297842 0.419698 0.290874
 Kondoa 0.40771 0.05339 0.317114 0.402091 0.524251 0.387472
 Kongwa 0.249474 0.04948 0.156935 0.247845 0.352756 0.245766
 Korogwe 0.344007 0.051197 0.241364 0.344784 0.44592 0.348011
 Kusini 0.324518 0.059917 0.209287 0.323308 0.449355 0.322694
 Kwimba 0.404527 0.047901 0.314196 0.402691 0.504569 0.399006
 Kyela 0.382878 0.062751 0.274887 0.37807 0.515081 0.362459
 Lindi Rural 0.317582 0.051423 0.216102 0.317626 0.421531 0.319062
 Lindi Urban 0.297252 0.060573 0.193838 0.290928 0.435193 0.279932
 Liwale 0.361727 0.055502 0.252605 0.36106 0.477321 0.361237
 Ludewa 0.398258 0.058641 0.29686 0.392386 0.52793 0.379703
 Lushoto 0.370783 0.054612 0.262617 0.370728 0.481792 0.371916
 Mafia 0.418937 0.202223 0.077369 0.408923 0.811563 0.363045
 Magharibi 0.304103 0.050092 0.206666 0.303349 0.408052 0.303157
 Magu 0.398935 0.046363 0.31444 0.396037 0.497959 0.38978
 Makete 0.361404 0.056417 0.258844 0.357308 0.484915 0.349655
 Manyoni 0.381837 0.052815 0.289005 0.376788 0.499074 0.366909
 Masasi 0.422123 0.055394 0.316616 0.420517 0.536465 0.41739
 Maswa 0.419944 0.053544 0.324061 0.415834 0.535871 0.406956
 Mbarali 0.240254 0.042716 0.15777 0.240088 0.32527 0.240885
 Mbeya Rural 0.349545 0.054988 0.23671 0.351887 0.454645 0.35868
 Mbeya Urban 0.341603 0.054676 0.247483 0.336441 0.462032 0.324975
 Mbinga 0.377534 0.047076 0.291958 0.37483 0.477224 0.368886
 Mbozi 0.382723 0.051179 0.290924 0.378882 0.493616 0.370659
 Mbulu 0.360172 0.054606 0.249749 0.361279 0.46844 0.365092
 Meatu 0.484529 0.063137 0.365534 0.48243 0.614552 0.477836
 Micheweni 0.310312 0.053132 0.208951 0.308525 0.423968 0.306779
 Missungwi 0.438877 0.052789 0.33971 0.436733 0.54925 0.432304
 Mjini 0.311552 0.055338 0.205706 0.310105 0.427551 0.308673
 Mkoani 0.304824 0.052504 0.204806 0.303005 0.41722 0.301175
 Mkuranga 0.341552 0.04888 0.245767 0.341132 0.441977 0.341617
 Monduli 0.302651 0.048843 0.212642 0.299887 0.408599 0.295499
 Morogoro Rural 0.288269 0.04942 0.190288 0.288905 0.387027 0.292335
 Morogoro Urban 0.283912 0.048085 0.194337 0.281699 0.386806 0.278391
 Moshi Rural 0.331276 0.043704 0.247612 0.330142 0.421906 0.328424
 Moshi Urban 0.280013 0.052452 0.177515 0.280093 0.385913 0.282389
 Mpanda 0.332515 0.043743 0.246806 0.331999 0.42211 0.331616
 Mpwapwa 0.354461 0.045545 0.264081 0.354579 0.445863 0.355706
 Mtwara Rural 0.411653 0.056407 0.312657 0.407024 0.533245 0.395636
 Mtwara Urban 0.31607 0.055961 0.210297 0.314234 0.434018 0.312098
 Mufindi 0.348416 0.053256 0.242122 0.348992 0.454159 0.351452
 Muheza 0.353018 0.052753 0.248011 0.353284 0.459715 0.35534
 Muleba 0.353914 0.052347 0.246613 0.356374 0.451977 0.363925
 Musoma Rural 0.328478 0.050416 0.232015 0.327162 0.433212 0.325278
 Musoma Urban 0.357358 0.057899 0.257269 0.351412 0.486926 0.339374
 Mvomero 0.350595 0.053806 0.247828 0.348887 0.464302 0.346777
 Mwanga 0.338238 0.053669 0.244724 0.333082 0.457888 0.323244
 Nachingwea 0.384357 0.062082 0.258301 0.386259 0.503489 0.391957
 Namtumbo 0.343734 0.05499 0.233163 0.344718 0.453117 0.348494
 Newala 0.371835 0.053678 0.264568 0.372291 0.478828 0.374268
 Ngara 0.405847 0.059226 0.289804 0.404973 0.52779 0.403982
 Ngorongoro 0.341063 0.060646 0.233888 0.336436 0.473539 0.327454
 Njombe 0.328978 0.040338 0.251803 0.327942 0.412159 0.326146
 Nkasi 0.33276 0.050179 0.240071 0.329651 0.441885 0.32423
 Nyamagana 0.324445 0.056363 0.21872 0.322055 0.444463 0.318457
 Nzega 0.328593 0.043638 0.243453 0.328106 0.417427 0.327736
 Rombo 0.31995 0.058083 0.208802 0.318711 0.440228 0.317681
 Ruangwa 0.376173 0.058587 0.271501 0.371296 0.505666 0.3623
 Rufiji 0.2921 0.054206 0.191519 0.28977 0.406858 0.286109
 Rungwe 0.382463 0.049938 0.289838 0.37991 0.488377 0.374745
 Same 0.318502 0.056007 0.207328 0.319368 0.428657 0.323305
 Sengerema 0.374041 0.040065 0.29838 0.372598 0.457435 0.369719
 Serengeti 0.359979 0.055163 0.2467 0.362412 0.464623 0.369536
 Shinyanga Rural 0.379144 0.054588 0.279058 0.37551 0.498122 0.36901
 Shinyanga Urban 0.389361 0.063204 0.259997 0.391722 0.510189 0.398594
 Sikonge 0.256687 0.046268 0.168601 0.255693 0.351674 0.254616
 Simanjiro 0.314515 0.04894 0.217709 0.314443 0.415113 0.31583
 Singida Rural 0.416127 0.050664 0.320068 0.414325 0.521921 0.410876
 Singida Urban 0.365034 0.055703 0.257339 0.363681 0.481485 0.362041
 Songea Rural 0.306958 0.048894 0.208466 0.308014 0.403922 0.311768
 Songea Urban 0.348621 0.051272 0.251851 0.346542 0.457024 0.342991
 Sumbawanga Rural 0.404125 0.054051 0.305213 0.400599 0.520657 0.393485
 Sumbawanga Urban 0.369092 0.055385 0.267382 0.365453 0.489453 0.358691
 Tabora Urban 0.320985 0.056572 0.213545 0.319016 0.440928 0.316456
 Tandahimba 0.442488 0.062256 0.336057 0.436146 0.578152 0.419318
 Tanga 0.333769 0.049775 0.243391 0.330563 0.440998 0.324208
 Tarime 0.363744 0.045881 0.27613 0.3622 0.460002 0.359564
 Temeke 0.285562 0.037889 0.212228 0.285161 0.361871 0.284871
 Tunduru 0.367182 0.051299 0.264543 0.367676 0.469548 0.36981
 Ukerewe 0.366894 0.058014 0.250484 0.367452 0.483364 0.369833
 Ulanga 0.292102 0.048153 0.197546 0.292069 0.389465 0.293397
 Urambo 0.310597 0.051835 0.217527 0.306811 0.424595 0.300245
 Uyui 0.259528 0.038336 0.184848 0.259474 0.335507 0.260072
 Wete 0.361817 0.056489 0.251176 0.360771 0.480695 0.360186
KENYA
 Baringo 0.279899 0.043984 0.19746 0.278453 0.370775 0.275833
 Bomet 0.276945 0.034905 0.213838 0.274963 0.35096 0.270856
 Bungoma 0.224521 0.026764 0.175078 0.223388 0.280368 0.221149
 Busia 0.232091 0.040469 0.156074 0.230725 0.316654 0.228721
 Embu 0.214275 0.037031 0.142574 0.21418 0.287734 0.214924
 Garissa 0.201187 0.043794 0.123553 0.19825 0.295992 0.193012
 Homa Bay 0.256105 0.032846 0.196978 0.254133 0.326086 0.250078
 Isiolo 0.274116 0.05515 0.175758 0.270557 0.393064 0.263994
 Kajiado 0.224215 0.038579 0.157759 0.220821 0.309477 0.214157
 Kakamega 0.284895 0.035038 0.221014 0.283082 0.358806 0.279374
 Keiyo-Marakwet 0.263977 0.04455 0.177366 0.263777 0.353027 0.264284
 Kericho 0.214343 0.039116 0.140096 0.213422 0.294804 0.212385
 Kiambu 0.217434 0.029663 0.162611 0.216219 0.279195 0.213865
 Kilifi 0.197055 0.027297 0.147046 0.195775 0.254341 0.193291
 Kirinyaga 0.245119 0.042587 0.163012 0.244759 0.330296 0.244804
 Kisii 0.253031 0.030477 0.196588 0.251763 0.316632 0.249278
 Kisumu 0.205099 0.026127 0.155398 0.204515 0.258291 0.203517
 Kitui 0.306028 0.039197 0.234563 0.304022 0.388609 0.29991
 Kwale 0.21321 0.039445 0.143683 0.210225 0.299837 0.204901
 Laikipia 0.171268 0.030921 0.113254 0.170411 0.234597 0.16906
 Lamu 0.221197 0.043751 0.140408 0.219204 0.314619 0.216482
 Machakos 0.201174 0.031385 0.141462 0.200567 0.264721 0.199669
 Makueni 0.354888 0.04675 0.272056 0.351717 0.454386 0.344282
 Mandera 0.210569 0.047828 0.125763 0.207483 0.313107 0.201517
 Marsabit 0.260956 0.05841 0.157974 0.256924 0.387094 0.249174
 Meru 0.25728 0.033192 0.197082 0.255481 0.32746 0.25182
 Migori 0.239612 0.035883 0.171399 0.238723 0.313353 0.237376
 Mombasa 0.134289 0.029381 0.084703 0.131467 0.199849 0.126024
 Murang’a 0.2378 0.034924 0.173262 0.23629 0.311028 0.233485
 Nairobi 0.110499 0.014691 0.083267 0.109955 0.140854 0.108896
 Nakuru 0.158986 0.023426 0.115298 0.158371 0.205751 0.156488
 Nandi 0.267796 0.031096 0.210128 0.266562 0.332402 0.264094
 Narok 0.306546 0.045371 0.223827 0.304174 0.402599 0.299552
 Nyamira 0.219622 0.038939 0.144935 0.219341 0.29684 0.219541
 Nyandarua 0.225456 0.03911 0.156202 0.222556 0.311266 0.2174
 Nyeri 0.236852 0.037968 0.167805 0.234868 0.317225 0.231076
 Samburu 0.188975 0.046658 0.112121 0.183797 0.295789 0.17467
 Siaya 0.243214 0.030533 0.187005 0.24182 0.307268 0.239087
 Taita Taveta 0.170494 0.036943 0.108046 0.166754 0.254616 0.160547
 Tana River 0.234252 0.045192 0.153093 0.231357 0.332332 0.226425
 Tharaka 0.289095 0.046947 0.202895 0.286759 0.38878 0.282564
 Trans Nzoia 0.267196 0.040025 0.198522 0.263728 0.354138 0.25548
 Turkana 0.246847 0.051781 0.152972 0.244213 0.355904 0.239152
 Uasin Gishu 0.211391 0.035665 0.145082 0.209966 0.286253 0.207635
 Vihiga 0.241742 0.043271 0.165836 0.238133 0.338123 0.231999
 Wajir 0.195857 0.045628 0.115998 0.192536 0.294879 0.186231
 West Pokot 0.289016 0.049891 0.196994 0.286656 0.394918 0.28263
UGANDA
 Adjumani 0.261711 0.018604 0.226279 0.261318 0.299419 0.260574
 Amolatar 0.299037 0.019231 0.261945 0.298796 0.337505 0.298335
 Amuria 0.307087 0.023696 0.261659 0.30672 0.3546 0.305994
 Apac 0.291861 0.017674 0.257419 0.29176 0.326863 0.291541
 Arua 0.273217 0.016167 0.242131 0.272965 0.305766 0.2725
 Bugiri 0.264013 0.013069 0.238596 0.263882 0.290237 0.263672
 Bukwa 0.295186 0.021655 0.253803 0.294782 0.338884 0.294011
 Bundibugyo 0.194048 0.015356 0.165019 0.193649 0.225368 0.192885
 Bushenyi 0.23995 0.015164 0.211125 0.239614 0.270729 0.238992
 Busia 0.267063 0.015134 0.237163 0.267038 0.297066 0.266995
 Butaleja 0.27925 0.01565 0.248393 0.279247 0.310067 0.279213
 Gulu 0.253819 0.018003 0.219523 0.253452 0.290212 0.252741
 Hoima 0.269749 0.016041 0.238712 0.269565 0.301832 0.269215
 Ibanda 0.280648 0.015056 0.251733 0.280374 0.311185 0.279891
 Iganga 0.227126 0.010956 0.205613 0.227061 0.249023 0.226961
 Isingiro 0.253023 0.017126 0.220023 0.252794 0.287321 0.252345
 Jinja 0.188422 0.012742 0.16388 0.188237 0.214019 0.187899
 Kaabong 0.308241 0.047924 0.218669 0.306793 0.406056 0.303847
 Kabale 0.23691 0.01224 0.212758 0.236842 0.261441 0.236733
 Kabarole 0.242994 0.012847 0.218147 0.242816 0.268871 0.242489
 Kaberamaido 0.268981 0.017575 0.235261 0.268697 0.304326 0.268159
 Kalangala 0.253757 0.021099 0.213685 0.253295 0.296472 0.25239
 Kaliro 0.277446 0.015788 0.246736 0.277303 0.308995 0.277059
 Kampala 0.162551 0.015517 0.133369 0.162118 0.194195 0.161262
 Kamuli 0.259509 0.015751 0.229315 0.259239 0.291271 0.258752
 Kamwenge 0.254662 0.012617 0.230949 0.254238 0.281006 0.253557
 Kanungu 0.281785 0.016026 0.250495 0.28164 0.313936 0.281392
 Kapchorwa 0.274861 0.016567 0.24298 0.2746 0.308258 0.274123
 Kasese 0.22426 0.012179 0.201361 0.223877 0.249481 0.223228
 Katakwi 0.298518 0.022678 0.255107 0.298139 0.344086 0.297398
 Kayunga 0.234659 0.010803 0.213414 0.234596 0.256272 0.234492
 Kibaale 0.250484 0.01144 0.229596 0.249902 0.275073 0.249027
 Kiboga 0.231169 0.015432 0.201803 0.230838 0.26246 0.230218
 Kiruhura 0.271334 0.031191 0.212546 0.270524 0.334752 0.268909
 Kisoro 0.26217 0.016806 0.229476 0.262008 0.295782 0.261716
 Kitgum 0.22003 0.015787 0.190111 0.219645 0.252187 0.218928
 Koboko 0.229705 0.016471 0.19858 0.22925 0.263505 0.228431
 Kotido 0.283531 0.03654 0.214677 0.282593 0.357745 0.280716
 Kumi 0.267738 0.019183 0.231355 0.267298 0.306652 0.266455
 Kyenjojo 0.264346 0.014456 0.236167 0.264236 0.29312 0.264007
 Lira 0.226631 0.013492 0.200637 0.226438 0.253744 0.226081
 Luweero 0.206726 0.011504 0.184666 0.206515 0.230063 0.20616
 Manafwa 0.253388 0.017569 0.21943 0.253175 0.288552 0.252767
 Masaka 0.20865 0.012341 0.185985 0.208083 0.23479 0.207156
 Masindi 0.244687 0.011064 0.223487 0.244456 0.267348 0.244102
 Mayuge 0.273957 0.016219 0.242588 0.273762 0.306435 0.2734
 Mbale 0.211104 0.011682 0.188668 0.210883 0.234875 0.210526
 Mbarara 0.201694 0.012857 0.17704 0.201461 0.227688 0.201027
 Mityana 0.229304 0.012048 0.20614 0.229092 0.253719 0.228723
 Moroto 0.307229 0.054478 0.206489 0.305243 0.419225 0.301144
 Moyo 0.215573 0.013514 0.189608 0.215284 0.243298 0.214817
 Mpigi 0.247438 0.018956 0.211263 0.247077 0.285648 0.246365
 Mubende 0.255686 0.016667 0.223737 0.255408 0.289215 0.254876
 Mukono 0.207919 0.012186 0.183983 0.207887 0.231992 0.207796
 Nakapiripirit 0.272908 0.031365 0.213563 0.272172 0.336454 0.270715
 Nakaseke 0.245713 0.019944 0.207761 0.245294 0.28605 0.244472
 Nakasongola 0.202663 0.012157 0.179822 0.202286 0.227814 0.201672
 Nebbi 0.250149 0.01416 0.22304 0.249878 0.278854 0.249396
 Ntungamo 0.267472 0.014509 0.239167 0.267362 0.296397 0.26715
 Pader 0.304523 0.020966 0.264351 0.304178 0.346668 0.303518
 Pallisa 0.266325 0.01506 0.236828 0.26627 0.296103 0.26614
 Rakai 0.25032 0.017994 0.215877 0.250011 0.286528 0.249404
 Rukungiri 0.222322 0.012229 0.198368 0.222209 0.246936 0.222015
 Sembabule 0.243954 0.022513 0.201612 0.243324 0.289883 0.242081
 Sironko 0.23295 0.01109 0.21204 0.232581 0.256248 0.232057
 Soroti 0.298727 0.020501 0.259522 0.298367 0.340018 0.297685
 Tororo 0.2622 0.016811 0.230186 0.261844 0.296288 0.261195
 Wakiso 0.174291 0.013663 0.148291 0.17401 0.201898 0.173463
 Yumbe 0.302381 0.020633 0.262827 0.302035 0.343916 0.301379

Contributor Information

Sarah Neal, Email: S.Neal@soton.ac.uk.

Corrine Ruktanonchai, Email: c.w.ruktanonchai@soton.ac.uk.

Venkatraman Chandra-Mouli, Email: chandramouliv@who.int.

Zoë Matthews, Email: Z.Matthews@soton.ac.uk.

Andrew J. Tatem, Email: A.J.Tatem@soton.ac.uk

References

  • 1.McQueston K, Silverman R, Glassman A. Adolescent fertility in low and middle income countries: effects and solutions. Washington: Center for Global Development; 2012. [Google Scholar]
  • 2.Neal S, Chandra-Mouli V, Chou D. Adolescent first births in East Africa: disaggregating characteristics, trends and determinants. Reprod Health. 2015;12:13. doi: 10.1186/1742-4755-12-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Uren Z, Sheers D, Dattani N. Teenage conceptions by small area deprivation in England and Wales, 2001–2002. Health Stat Q. 2007;33:34–9. [PubMed] [Google Scholar]
  • 4.Shoff C, Yang TC. Spatially varying predictors of teenage birth rates among counties in the United States. Demogr Res. 2012;27:377–418. doi: 10.4054/DemRes.2012.27.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gould JB, Herrchen B, Pham T, Bera S, Brindis C. Small-area analysis: targeting high-risk areas for adolescent pregnancy prevention programs. Fam Plan Perspect. 1998;30:173–176. doi: 10.2307/2991679. [DOI] [PubMed] [Google Scholar]
  • 6.Bailey PE, Keyes EB, Parker C, Abdullah M, Kebede H, Freedman L. Using a GIS to model interventions to strengthen the emergency referral system for maternal and newborn health in Ethiopia. Int Fed Gynaecol Obstet. 2011;115(3):300–9. doi: 10.1016/j.ijgo.2011.09.004. [DOI] [PubMed] [Google Scholar]
  • 7.Gjesfjeld CD, Jung J-K. How far? Using geographical information systems (GIS) to examine maternity care access for expectant mothers in a rural state. Soc Work Health Care. 2011;50(9):682–93. doi: 10.1080/00981389.2011.575537. [DOI] [PubMed] [Google Scholar]
  • 8.Gething PW, Johnson FA, Frempong-Ainguah F, Nyarko P, Baschieri A, Aboagye P, et al. Geographical access to care at birth in Ghana: a barrier to safe motherhood. BMC Public Health. 2012;12:991. doi: 10.1186/1471-2458-12-991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Sudhof L, Amoroso C, Barebwanuwe P, Munyaneza F, Karamaga A, Zambotti G, et al. Local use of geographic information systems to improve data utilisation and health services: mapping caesarean section coverage in rural Rwanda. Trop Med Int Health. 2013;18(1):18–26. doi: 10.1111/tmi.12016. [DOI] [PubMed] [Google Scholar]
  • 10.Higgs G. A literature review of the use of GIS-based measures of access to health care services. Heal Serv Outcomes Res Methodol. 2004;5(2):119–39. doi: 10.1007/s10742-005-4304-7. [DOI] [Google Scholar]
  • 11.Engebretsen S. Using data to see and select the most vulnerable adolescent girls. Population Council. 2012. [Google Scholar]
  • 12.Ebener S, Guerra-Arias M, Campbell J, Tatem A, Moran A, Johnson F, Fogstad H, Stenberg K, Neal S, Bailey P, Porter R, Matthews Z. The geography of maternal and newborn health: the state of the art. Int J Health Geogr. 2015;14:19. doi: 10.1186/s12942-015-0012-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Uganda Bureau of Statistics (UBOS) and ICF International Inc. 2012 [producers]. Uganda Demographic and Health Survey 2011. [Dataset] UGIR60.DTA, UGGE61FL.DBF. Kampala: UBOS and Calverton: ICF International Inc. ICF International [distributor] 2012.
  • 14.Kenya National Bureau of Statistics (KNBS) and ICF Macro. 2010 [producers]. Kenya Demographic and HealthSurvey 2008–09 [dataset]. KEIR52.DTA, KEGE52FL.DBF. Calverton: KNBS and ICF Macro. ICF International [distributor] 2010.
  • 15.National Bureau of Statistics (NBS) [Tanzania] and ICF Macro. [producers] 2011. Tanzania Demographic and Health Survey 2010 [dataset]. TZIR63.DTA, TZGE61FL.DBF. Dar es Salaam: NBS and ICF Macro.SAS Institute, Inc.
  • 16.Environmental Systems Research Institute . ArcGIS Desktop: Release 10.2. Redlands: ESRI; 2013. [Google Scholar]
  • 17.SAS Institute Inc . SAS version 9.4. Cary: SAS Institute Inc; 2013. [Google Scholar]
  • 18.Global administrative areas (boundaries) University of Berkeley, Museum of Vertebrate Zoology and the International Rice Research Institute. 2012. [Google Scholar]
  • 19.Spatial Data Repository, The Demographic and Health Surveys Program. ICF International. Funded by the United States Agency for International Development (USAID). Available from spatialdata.dhsprogram.com. [Accessed 4 June 2015].
  • 20.Davies TM, Hazelton ML. Adaptive kernel estimation of spatial relative risk. Stat Med. 2010;29(23):2423–2437. doi: 10.1002/sim.3995. [DOI] [PubMed] [Google Scholar]
  • 21.R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. [Google Scholar]
  • 22.Larmarange J, Vallo R, Yaro S, Msellati P, Meda N. Methods for mapping regional trends of HIV prevalence from Demographic and Health Surveys (DHS) Cybergeo. 2011 [Google Scholar]
  • 23.Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J R Stat Soc Ser B. 2009;71(2):319–392. doi: 10.1111/j.1467-9868.2008.00700.x. [DOI] [Google Scholar]
  • 24.Achia TNO. Spatial modelling and mapping of female genital mutilation in Kenya. BMC Public Health. 2014;14:276. doi: 10.1186/1471-2458-14-276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kenyan Central Bureau of Statistics, World Bank. Geographic Dimensions of Well-Being in Kenya: Where are the Poor? 2003. http://econ.worldbank.org/external/default/main?theSitePK=477894&contentMDK=20306724&menuPK=546584&pagePK=64168182&piPK=64168060. Accessed Sept 2015.
  • 26.Wetlands Management Department, Ministry of Water and Environment, Uganda; Uganda Bureau of Statistics; International Livestock Research Institute; and World Resources Institute. Mapping a better future: how spatial analysis can benefit Wetlands and reduce poverty in Uganda. Washington and Kampala: World Resources Institute; 2009.
  • 27.Kenya Department of Statistics. http://inequalities.sidint.net/kenya/national/. Accessed Sept 2015.
  • 28.Ombati V, Ombati M. Girl’s Education in Kenya’s Semi-Arid Zones. 2015. [Google Scholar]
  • 29.Bartlett L, Ghaffar-Kucher A. Refugees, immigrants, and education in the Global South: Lives in Motion. Abingdon: Routledge; 2013. [Google Scholar]
  • 30.Sandøy IF, Blystad A, Shayo EH, Maundy E, Michelo C, Zulu J, Byskov J. Condom availability in high risk places and condom use: a study at district level in Kenya, Tanzania and Zambia. BMC Public Health. 2012;12:1030. doi: 10.1186/1471-2458-12-1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Human Development Report 2015, ‘Work For Human Development’. 2015. Link to source: http://hdr.undp.org/sites/default/files/2015_human_development_report.pdf.
  • 32.Conde-Agudelo A, Belizán JM, Lammers C. Maternal-perinatal morbidity and mortality associated with adolescent pregnancy in Latin America: cross-sectional study. Am J Obstet Gynecol. 2005;192(2):342–9. doi: 10.1016/j.ajog.2004.10.593. [DOI] [PubMed] [Google Scholar]
  • 33.Chen LC, Gesche MC, Ahmed S, Chowdhury AI, Mosley WH. Maternal mortality in rural Bangladesh. Stud Fam Plann. 1974;5(11):334–41. doi: 10.2307/1965185. [DOI] [PubMed] [Google Scholar]
  • 34.Sharma V, Katz J, Mullany LC, Khatry SK, LeClerq SC, Shrestha SR, Darmstadt G, Tielsch JM. Young maternal age and the risk of neonatal mortality in Rural Nepal. Arch Pediatr Adolesc Med. 2008;162(9):828–835. doi: 10.1001/archpedi.162.9.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.UNAIDS UNFPA. WHO . Seen but not heard: very young adolescents aged 10–14 years. Geneva: UNAIDS; 2004. [Google Scholar]
  • 36.Department for Skills and Education . Teenage pregnancy: accelerating the strategy to 2010. Nottingham: DFES; 2006. [Google Scholar]
  • 37.Hadley A, Chandra-Mouli V, and Ingham R. Implementing the United Kingdom Government’s 10-year teenage pregnancy strategy for England (1999 to 2010): applicable lessons for other countries. J Adolesc Health (in press). 2016a. [DOI] [PubMed]
  • 38.Teenage Pregnancy Strategy for England. Available from: https://www.researchgate.net/publication/303501892_Teenage_Pregnancy_Strategy_for_England [accessed 7 Jul 2016]. [DOI] [PubMed]
  • 39.Blake BJ, Bentov L. Geographical mapping of unmarried teen births and selected sociodemographic variables. Public Health Nurs. 2001;18:33–3. doi: 10.1046/j.1525-1446.2001.00033.x. [DOI] [PubMed] [Google Scholar]
  • 40.Neal S, Hosegood V. How reliable are reports of early adolescent reproductive and sexual health events in demographic and health surveys? Int Perspect Sex Reprod Health. 2015;41(04):210–217. doi: 10.1363/intsexrephea.41.4.0210. [DOI] [PubMed] [Google Scholar]

Articles from Reproductive Health are provided here courtesy of BMC

RESOURCES