Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Sep 15;89(18):8507–8511. doi: 10.1073/pnas.89.18.8507

Existence of two pathways for the endocytosis of epidermal growth factor by rat liver: phenylarsine oxide-sensitive and -insensitive pathways.

Y Kato 1, H Sato 1, M Ichikawa 1, H Suzuki 1, Y Sawada 1, M Hanano 1, T Fuwa 1, Y Sugiyama 1
PMCID: PMC49949  PMID: 1528854

Abstract

The effect of phenylarsine oxide (PAO) on the internalization rate of epidermal growth factor (EGF) was investigated using perfused rat liver and isolated rat hepatocytes. In perfused liver, a tracer concentration of 125I-EGF alone or with excess unlabeled EGF (20 nM) was perfused and the internalization rate constants (kint) were measured. In the absence of PAO, kint values did not differ significantly for either dose condition. However, with the addition of PAO to the perfusate, the kint value dropped to 4% of that of the control at the low concentration of EGF, while dropping to only 40% of that of the control at the high concentration of EGF. These results suggest the existence of a PAO-insensitive internalization pathway having a kint value comparable with that of the other pathway. Similar EGF concentration-dependent inhibition of 125I-EGF internalization caused by PAO was ascertained using isolated rat hepatocytes. PAO also decreased the cellular ATP content in isolated hepatocytes. However, when we lowered the cellular ATP content with rotenone, the cell-surface binding and internalization of EGF were comparable with the control levels. We concluded that there exist dual pathways for the internalization of EGF and that excess doses of EGF lead to EGF internalization not only through a PAO-sensitive pathway but also through a PAO-insensitive pathway, whereas at a tracer dose of EGF, the internalization occurs mainly via the PAO-sensitive pathway.

Full text

PDF
8507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett H. P., McMartin C. Peptide hormones and their analogues: distribution, clearance from the circulation, and inactivation in vivo. Pharmacol Rev. 1978 Sep;30(3):247–292. [PubMed] [Google Scholar]
  2. Bridges K., Harford J., Ashwell G., Klausner R. D. Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes. Proc Natl Acad Sci U S A. 1982 Jan;79(2):350–354. doi: 10.1073/pnas.79.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke B. L., Weigel P. H. Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. ATP depletion blocks receptor recycling but not a single round of endocytosis. J Biol Chem. 1985 Jan 10;260(1):128–133. [PubMed] [Google Scholar]
  4. Dunn W. A., Connolly T. P., Hubbard A. L. Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway. J Cell Biol. 1986 Jan;102(1):24–36. doi: 10.1083/jcb.102.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gibson A. E., Noel R. J., Herlihy J. T., Ward W. F. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am J Physiol. 1989 Aug;257(2 Pt 1):C182–C184. doi: 10.1152/ajpcell.1989.257.2.C182. [DOI] [PubMed] [Google Scholar]
  6. Gladhaug I. P., Christoffersen T. Kinetics of epidermal growth factor binding and processing in isolated intact rat hepatocytes. Dynamic externalization of receptors during ligand internalization. Eur J Biochem. 1987 Apr 15;164(2):267–275. doi: 10.1111/j.1432-1033.1987.tb11054.x. [DOI] [PubMed] [Google Scholar]
  7. Griendling K. K., Delafontaine P., Rittenhouse S. E., Gimbrone M. A., Jr, Alexander R. W. Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin II-stimulated cultured vascular smooth muscle cells. J Biol Chem. 1987 Oct 25;262(30):14555–14562. [PubMed] [Google Scholar]
  8. Hertel C., Coulter S. J., Perkins J. P. A comparison of catecholamine-induced internalization of beta-adrenergic receptors and receptor-mediated endocytosis of epidermal growth factor in human astrocytoma cells. Inhibition by phenylarsine oxide. J Biol Chem. 1985 Oct 15;260(23):12547–12553. [PubMed] [Google Scholar]
  9. Hertel C., Coulter S. J., Perkins J. P. The involvement of cellular ATP in receptor-mediated internalization of epidermal growth factor and hormone-induced internalization of beta-adrenergic receptors. J Biol Chem. 1986 May 5;261(13):5974–5980. [PubMed] [Google Scholar]
  10. Kim D. C., Hanano M., Sawada Y., Iga T., Sugiyama Y. Kinetic analysis of clearance of epidermal growth factor in isolated perfused rat kidney. Am J Physiol. 1991 Dec;261(6 Pt 2):F988–F997. doi: 10.1152/ajprenal.1991.261.6.F988. [DOI] [PubMed] [Google Scholar]
  11. Larkin J. M., Donzell W. C., Anderson R. G. Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes. J Cell Physiol. 1985 Sep;124(3):372–378. doi: 10.1002/jcp.1041240303. [DOI] [PubMed] [Google Scholar]
  12. Maack T. Renal clearance and isolated kidney perfusion techniques. Kidney Int. 1986 Aug;30(2):142–151. doi: 10.1038/ki.1986.166. [DOI] [PubMed] [Google Scholar]
  13. Maack T., Suzuki M., Almeida F. A., Nussenzveig D., Scarborough R. M., McEnroe G. A., Lewicki J. A. Physiological role of silent receptors of atrial natriuretic factor. Science. 1987 Oct 30;238(4827):675–678. doi: 10.1126/science.2823385. [DOI] [PubMed] [Google Scholar]
  14. Marti U., Burwen S. J., Jones A. L. Biological effects of epidermal growth factor, with emphasis on the gastrointestinal tract and liver: an update. Hepatology. 1989 Jan;9(1):126–138. doi: 10.1002/hep.1840090122. [DOI] [PubMed] [Google Scholar]
  15. McClain D. A., Olefsky J. M. Evidence for two independent pathways of insulin-receptor internalization in hepatocytes and hepatoma cells. Diabetes. 1988 Jun;37(6):806–815. doi: 10.2337/diab.37.6.806. [DOI] [PubMed] [Google Scholar]
  16. Moriarity D. M., Savage C. R., Jr Interaction of epidermal growth factor with adult rat liver parenchymal cells in primary culture. Arch Biochem Biophys. 1980 Sep;203(2):506–518. doi: 10.1016/0003-9861(80)90208-8. [DOI] [PubMed] [Google Scholar]
  17. O'Keefe E., Hollenberg M. D., Cuatrecasas P. Epidermal growth factor. Characteristics of specific binding in membranes from liver, placenta, and other target tissues. Arch Biochem Biophys. 1974 Oct;164(2):518–526. doi: 10.1016/0003-9861(74)90062-9. [DOI] [PubMed] [Google Scholar]
  18. Opleta K., O'Loughlin E. V., Shaffer E. A., Hayden J., Hollenberg M., Gall D. G. Effect of epidermal growth factor on growth and postnatal development of the rabbit liver. Am J Physiol. 1987 Nov;253(5 Pt 1):G622–G626. doi: 10.1152/ajpgi.1987.253.5.G622. [DOI] [PubMed] [Google Scholar]
  19. Rush G. F., Alberts D. The hepatic binding and uptake kinetics of epidermal growth factor: studies with isolated rat hepatocytes. Life Sci. 1987 Feb 16;40(7):679–685. doi: 10.1016/0024-3205(87)90270-0. [DOI] [PubMed] [Google Scholar]
  20. Sato H., Sugiyama Y., Sawada Y., Iga T., Fuwa T., Hanano M. Internalization of EGF in perfused rat liver is independent of the degree of receptor occupancy. Am J Physiol. 1990 May;258(5 Pt 1):G682–G689. doi: 10.1152/ajpgi.1990.258.5.G682. [DOI] [PubMed] [Google Scholar]
  21. Sato H., Sugiyama Y., Sawada Y., Iga T., Sakamoto S., Fuwa T., Hanano M. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8355–8359. doi: 10.1073/pnas.85.21.8355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmid S. L., Carter L. L. ATP is required for receptor-mediated endocytosis in intact cells. J Cell Biol. 1990 Dec;111(6 Pt 1):2307–2318. doi: 10.1083/jcb.111.6.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stahl P., Schwartz A. L. Receptor-mediated endocytosis. J Clin Invest. 1986 Mar;77(3):657–662. doi: 10.1172/JCI112359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wall D. A., Maack T. Endocytic uptake, transport, and catabolism of proteins by epithelial cells. Am J Physiol. 1985 Jan;248(1 Pt 1):C12–C20. doi: 10.1152/ajpcell.1985.248.1.C12. [DOI] [PubMed] [Google Scholar]
  25. Yachi K., Sugiyama Y., Sato H., Kim D. C., Fuwa T., Iga T., Hanano M. Comparison of specific binding of human epidermal growth factor (EGF) to sinusoidal and bile canalicular membranes isolated from rat liver. J Biochem. 1988 Mar;103(3):448–451. doi: 10.1093/oxfordjournals.jbchem.a122290. [DOI] [PubMed] [Google Scholar]
  26. Yamazaki M., Suzuki H., Sugiyama Y., Iga T., Hanano M. Uptake of organic anions by isolated rat hepatocytes. A classification in terms of ATP-dependency. J Hepatol. 1992 Jan;14(1):41–47. doi: 10.1016/0168-8278(92)90129-d. [DOI] [PubMed] [Google Scholar]
  27. Yanai S., Sugiyama Y., Iga T., Fuwa T., Hanano M. Comparison of the methods for determining cell-surface and intracellular receptors for epidermal growth factor in the rat liver. Pharm Res. 1991 May;8(5):557–562. doi: 10.1023/a:1015836219502. [DOI] [PubMed] [Google Scholar]
  28. Yanai S., Sugiyama Y., Iga T., Fuwa T., Hanano M. Kinetic analysis of the downregulation of epidermal growth factor receptors in rats in vivo. Am J Physiol. 1990 Apr;258(4 Pt 1):C593–C598. doi: 10.1152/ajpcell.1990.258.4.C593. [DOI] [PubMed] [Google Scholar]
  29. Yanai S., Sugiyama Y., Kim D. C., Iga T., Fuwa T., Hanano M. Kinetic analysis of receptor-mediated endocytosis of epidermal growth factor by isolated rat hepatocytes. Am J Physiol. 1991 Mar;260(3 Pt 1):C457–C467. doi: 10.1152/ajpcell.1991.260.3.C457. [DOI] [PubMed] [Google Scholar]
  30. Yeh Y. C., Scheving L. A., Tsai T. H., Scheving L. E. Circadian stage-dependent effects of epidermal growth factor on deoxyribonucleic acid synthesis in ten different organs of the adult male mouse. Endocrinology. 1981 Aug;109(2):644–651. doi: 10.1210/endo-109-2-644. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES