Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Sep 15;89(18):8596–8600. doi: 10.1073/pnas.89.18.8596

Molecular organization of Leishmania RNA virus 1.

K D Stuart 1, R Weeks 1, L Guilbride 1, P J Myler 1
PMCID: PMC49967  PMID: 1382295

Abstract

The complete 5284-nucleotide sequence of the double-stranded RNA genome of Leishmania RNA virus 1 (LRV1) was determined and contains three open reading frames (ORFs) on the plus (+) (mRNA) strand. The predicted amino acid sequence of ORF3 has motifs characteristic of viral RNA-dependent RNA polymerases. ORF2, which may encode the major viral coat protein, overlaps ORF3 by 71 nucleotides, suggesting a +1 translational frameshift to produce a gag-pol type of fusion protein. Two alternative models for the frameshift are presented. The 5' splice leader sequence of kinetoplastid mRNAs is not in LRV1 RNA. This suggests that the 450-base region at the 5' end of the LRV1 (+)-strand, which contains ORF1 and is highly conserved among viral strains, does not encode protein but has a role in initiation of translation and/or RNA stability. The similarity of LRV1 genomic organization, replication cycle, and RNA-dependent RNA polymerase sequence to those of the yeast virus ScV L-A suggests a common ancestral origin. The possibility that LRV1 affects pathogenesis in leishmaniasis is intriguing.

Full text

PDF
8596

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins J. F., Weiss R. B., Gesteland R. F. Ribosome gymnastics--degree of difficulty 9.5, style 10.0. Cell. 1990 Aug 10;62(3):413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass B. L., Weintraub H., Cattaneo R., Billeter M. A. Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell. 1989 Feb 10;56(3):331–331. doi: 10.1016/0092-8674(89)90234-1. [DOI] [PubMed] [Google Scholar]
  3. Belcourt M. F., Farabaugh P. J. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell. 1990 Jul 27;62(2):339–352. doi: 10.1016/0092-8674(90)90371-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruenn J. A. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res. 1991 Jan 25;19(2):217–226. doi: 10.1093/nar/19.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond M. E., Dowhanick J. J., Nemeroff M. E., Pietras D. F., Tu C. L., Bruenn J. A. Overlapping genes in a yeast double-stranded RNA virus. J Virol. 1989 Sep;63(9):3983–3990. doi: 10.1128/jvi.63.9.3983-3990.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Esteban R., Fujimura T., Wickner R. B. Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J. 1989 Mar;8(3):947–954. doi: 10.1002/j.1460-2075.1989.tb03456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evstafieva A. G., Ugarova T. Y., Chernov B. K., Shatsky I. N. A complex RNA sequence determines the internal initiation of encephalomyocarditis virus RNA translation. Nucleic Acids Res. 1991 Feb 11;19(3):665–671. doi: 10.1093/nar/19.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujimura T., Esteban R., Esteban L. M., Wickner R. B. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell. 1990 Aug 24;62(4):819–828. doi: 10.1016/0092-8674(90)90125-x. [DOI] [PubMed] [Google Scholar]
  9. Fujimura T., Esteban R., Wickner R. B. In vitro L-A double-stranded RNA synthesis in virus-like particles from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4433–4437. doi: 10.1073/pnas.83.12.4433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujimura T., Wickner R. B. L-A double-stranded RNA viruslike particle replication cycle in Saccharomyces cerevisiae: particle maturation in vitro and effects of mak10 and pet18 mutations. Mol Cell Biol. 1987 Jan;7(1):420–426. doi: 10.1128/mcb.7.1.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  12. Guilbride L., Myler P. J., Stuart K. Distribution and sequence divergence of LRV1 viruses among different Leishmania species. Mol Biochem Parasitol. 1992 Aug;54(1):101–104. doi: 10.1016/0166-6851(92)90099-6. [DOI] [PubMed] [Google Scholar]
  13. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  14. Icho T., Wickner R. B. The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem. 1989 Apr 25;264(12):6716–6723. [PubMed] [Google Scholar]
  15. Jackson R. J., Howell M. T., Kaminski A. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci. 1990 Dec;15(12):477–483. doi: 10.1016/0968-0004(90)90302-r. [DOI] [PubMed] [Google Scholar]
  16. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Perry K., Agabian N. mRNA processing in the Trypanosomatidae. Experientia. 1991 Feb 15;47(2):118–128. doi: 10.1007/BF01945412. [DOI] [PubMed] [Google Scholar]
  18. Revets H., Dekegel D., Deleersnijder W., De Jonckheere J., Peeters J., Leysen E., Hamers R. Identification of virus-like particles in Eimeria stiedae. Mol Biochem Parasitol. 1989 Oct;36(3):209–215. doi: 10.1016/0166-6851(89)90168-0. [DOI] [PubMed] [Google Scholar]
  19. Strauss J. H., Strauss E. G. Evolution of RNA viruses. Annu Rev Microbiol. 1988;42:657–683. doi: 10.1146/annurev.mi.42.100188.003301. [DOI] [PubMed] [Google Scholar]
  20. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tao J., Ginsberg I., Banerjee N., Held W., Koltin Y., Bruenn J. A. Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol. 1990 Apr;10(4):1373–1381. doi: 10.1128/mcb.10.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tarr P. I., Aline R. F., Jr, Smiley B. L., Scholler J., Keithly J., Stuart K. LR1: a candidate RNA virus of Leishmania. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9572–9575. doi: 10.1073/pnas.85.24.9572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang A. L., Wang C. C. Viruses of parasitic protozoa. Parasitol Today. 1991 Apr;7(4):76–80. doi: 10.1016/0169-4758(91)90198-w. [DOI] [PubMed] [Google Scholar]
  24. Weeks R., Aline R. F., Jr, Myler P. J., Stuart K. LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA. J Virol. 1992 Mar;66(3):1389–1393. doi: 10.1128/jvi.66.3.1389-1393.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weiss R. B., Huang W. M., Dunn D. M. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell. 1990 Jul 13;62(1):117–126. doi: 10.1016/0092-8674(90)90245-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wickner R. B. Double-stranded RNA replication in yeast: the killer system. Annu Rev Biochem. 1986;55:373–395. doi: 10.1146/annurev.bi.55.070186.002105. [DOI] [PubMed] [Google Scholar]
  27. Wickner R. B. Yeast virology. FASEB J. 1989 Sep;3(11):2257–2265. doi: 10.1096/fasebj.3.11.2550303. [DOI] [PubMed] [Google Scholar]
  28. Widmer G., Comeau A. M., Furlong D. B., Wirth D. F., Patterson J. L. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5979–5982. doi: 10.1073/pnas.86.15.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Widmer G., Keenan M. C., Patterson J. L. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis. J Virol. 1990 Aug;64(8):3712–3715. doi: 10.1128/jvi.64.8.3712-3715.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Widmer G., Patterson J. L. Genomic structure and RNA polymerase activity in Leishmania virus. J Virol. 1991 Aug;65(8):4211–4215. doi: 10.1128/jvi.65.8.4211-4215.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wimmer E. Genome-linked proteins of viruses. Cell. 1982 Feb;28(2):199–201. doi: 10.1016/0092-8674(82)90335-x. [DOI] [PubMed] [Google Scholar]
  32. Zuker M. Computer prediction of RNA structure. Methods Enzymol. 1989;180:262–288. doi: 10.1016/0076-6879(89)80106-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES