Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1997 Apr;50(4):288–293. doi: 10.1136/jcp.50.4.288

Genetic analysis of hydatidiform moles in paraffin wax embedded tissue using rapid, sequence specific PCR-based HLA class II typing.

A C Bateman 1, S K Hemmatpour 1, J M Theaker 1, W M Howell 1
PMCID: PMC499877  PMID: 9215143

Abstract

AIMS: To determine the applicability of rapid, sequence specific polymerase chain reaction (PCR)-based HLA class II genotyping for the distinction of complete from partial hydatidiform moles (HM) using DNA extracted from formalin fixed and paraffin wax embedded tissue. METHODS: Nine HM were studied. DNA was extracted from formalin fixed and paraffin wax embedded tissue after mechanical separation of decidual and molar components. HLA class II DRB (DRB1, -3, -4, and -5) and DQB1 genotyping was performed using a parallel series of PCR reactions, each of which contained sequence specific primers designed to amplify different HLA DRB and DQB1 alleles or allele groups (PCR-SSP analysis). In each case the HLA DRB and DQB1 genotypes identified within the decidua and HM were compared. RESULTS: Within the decidual tissue, HLA DRB genotypes were assignable in all nine cases, and HLA DQB1 genotypes were identified in seven cases. Within the molar tissue, HLA DRB genotypes were assignable in seven cases, and at least one HLA DQB1 allele was identified in seven cases. Interpretation based on HLA class II genotyping was therefore possible in two cases classified on histological appearances as complete HM, in four classified as partial HM, and in one HM of uncertain type. Different HLA DRB and DQB1 haplotypes were identified within the decidual and molar tissue from both complete HM, consistent with a solely paternal origin and supporting the histological diagnosis. HLA DRB and DQB1 alleles common to the decidual and molar tissue were present within the four partial HM and the HM of histologically uncertain type, consistent with combined maternal and paternal genetic input to these HM, supporting the histological diagnosis in four cases and suggesting that the histologically equivocal case was also a partial HM. CONCLUSION: PCR-SSP HLA class II DRB and DQB1 typing is reliably applicable to DNA extracted from formalin fixed and paraffin wax embedded tissue. Therefore, in a suitably equipped HLA typing laboratory, this technique provides a useful adjunct to histological examination for differentiation of complete from partial HM.

Full text

PDF
288

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldener-Cannavá A., Olerup O. HLA-DOB1 "low-resolution' typing by PCR amplification with sequence-specific primers (PCR-SSP). Eur J Immunogenet. 1994 Dec;21(6):447–455. doi: 10.1111/j.1744-313x.1994.tb00217.x. [DOI] [PubMed] [Google Scholar]
  2. Arima T., Imamura T., Amada S., Tsuneyoshi M., Wake N. Genetic origin of malignant trophoblastic neoplasms. Cancer Genet Cytogenet. 1994 Apr;73(2):95–102. doi: 10.1016/0165-4608(94)90192-9. [DOI] [PubMed] [Google Scholar]
  3. Bateman A. C., Hemmatpour S. K., Theaker J. M., Howell W. M. Nested polymerase chain reaction-based HLA class II typing for the unique identification of formalin-fixed and paraffin-embedded tissue. J Pathol. 1997 Feb;181(2):228–234. doi: 10.1002/(SICI)1096-9896(199702)181:2<228::AID-PATH727>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  4. Bateman A. C., Leung S. T., Howell W. M., Roche W. R., Jones D. B., Theaker J. M. Detection of specimen contamination in routine histopathology by HLA class II typing using the polymerase chain reaction and sequence specific oligonucleotide probing. J Pathol. 1994 Jul;173(3):243–248. doi: 10.1002/path.1711730307. [DOI] [PubMed] [Google Scholar]
  5. Bateman A. C., Sage D. A., Al-Talib R. K., Theaker J. M., Jones D. B., Howell W. M. Investigation of specimen mislabelling in paraffin-embedded tissue using a rapid, allele-specific, PCR-based HLA class II typing method. Histopathology. 1996 Feb;28(2):169–174. doi: 10.1046/j.1365-2559.1996.277323.x. [DOI] [PubMed] [Google Scholar]
  6. Bocklage T. J., Smith H. O., Bartow S. A. Distinctive flow histogram pattern in molar pregnancies with elevated maternal serum human chorionic gonadotropin levels. Cancer. 1994 Jun 1;73(11):2782–2790. doi: 10.1002/1097-0142(19940601)73:11<2782::aid-cncr2820731122>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  7. Bracken M. B. Incidence and aetiology of hydatidiform mole: an epidemiological review. Br J Obstet Gynaecol. 1987 Dec;94(12):1123–1135. doi: 10.1111/j.1471-0528.1987.tb02311.x. [DOI] [PubMed] [Google Scholar]
  8. Bunce M., Taylor C. J., Welsh K. I. Rapid HLA-DQB typing by eight polymerase chain reaction amplifications with sequence-specific primers (PCR-SSP). Hum Immunol. 1993 Aug;37(4):201–206. doi: 10.1016/0198-8859(93)90502-r. [DOI] [PubMed] [Google Scholar]
  9. Fisher R. A., Newlands E. S. Rapid diagnosis and classification of hydatidiform moles with polymerase chain reaction. Am J Obstet Gynecol. 1993 Feb;168(2):563–569. doi: 10.1016/0002-9378(93)90494-4. [DOI] [PubMed] [Google Scholar]
  10. Fukunaga M., Ushigome S., Fukunaga M., Sugishita M. Application of flow cytometry in diagnosis of hydatidiform moles. Mod Pathol. 1993 May;6(3):353–359. [PubMed] [Google Scholar]
  11. Fukuyama R., Takata M., Kudoh J., Sakai K., Tamura S., Shimizu N. DNA diagnosis of hydatidiform mole using the polymerase chain reaction. Hum Genet. 1991 Jun;87(2):216–218. doi: 10.1007/BF00204186. [DOI] [PubMed] [Google Scholar]
  12. Howell W. M., Leung S. T., Jones D. B., Nakshabendi I., Hall M. A., Lanchbury J. S., Ciclitira P. J., Wright D. H. HLA-DRB, -DQA, and -DQB polymorphism in celiac disease and enteropathy-associated T-cell lymphoma. Common features and additional risk factors for malignancy. Hum Immunol. 1995 May;43(1):29–37. doi: 10.1016/0198-8859(94)00130-i. [DOI] [PubMed] [Google Scholar]
  13. Jacobs P. A., Szulman A. E., Funkhouser J., Matsuura J. S., Wilson C. C. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet. 1982 Jul;46(Pt 3):223–231. doi: 10.1111/j.1469-1809.1982.tb00714.x. [DOI] [PubMed] [Google Scholar]
  14. Kajii T., Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977 Aug 18;268(5621):633–634. doi: 10.1038/268633a0. [DOI] [PubMed] [Google Scholar]
  15. Kovacs B. W., Shahbahrami B., Tast D. E., Curtin J. P. Molecular genetic analysis of complete hydatidiform moles. Cancer Genet Cytogenet. 1991 Jul 15;54(2):143–152. doi: 10.1016/0165-4608(91)90202-6. [DOI] [PubMed] [Google Scholar]
  16. Lane S. A., Taylor G. R., Ozols B., Quirke P. Diagnosis of complete molar pregnancy by microsatellites in archival material. J Clin Pathol. 1993 Apr;46(4):346–348. doi: 10.1136/jcp.46.4.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marsh S. G., Bodmer J. G. HLA class II region nucleotide sequences, 1995. Tissue Antigens. 1995 Sep;46(3 ):258–280. doi: 10.1111/j.1399-0039.1995.tb03125.x. [DOI] [PubMed] [Google Scholar]
  18. Olerup O., Zetterguist H. DR "low-resolution" PCR-SSP typing--a correction and an up-date. Tissue Antigens. 1993 Jan;41(1):55–56. doi: 10.1111/j.1399-0039.1993.tb01979.x. [DOI] [PubMed] [Google Scholar]
  19. Olerup O., Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens. 1992 May;39(5):225–235. doi: 10.1111/j.1399-0039.1992.tb01940.x. [DOI] [PubMed] [Google Scholar]
  20. Paradinas F. J., Browne P., Fisher R. A., Foskett M., Bagshawe K. D., Newlands E. A clinical, histopathological and flow cytometric study of 149 complete moles, 146 partial moles and 107 non-molar hydropic abortions. Histopathology. 1996 Feb;28(2):101–110. doi: 10.1046/j.1365-2559.1996.247295.x. [DOI] [PubMed] [Google Scholar]
  21. Takahashi H., Ikarashi T., Kanazawa K., Kominami R., Tanaka K. Re-evaluation of hydatidiform mole by DNA fingerprint method: the discrepancy in the diagnoses by pathological finding and the DNA fingerprint method. Placenta. 1991 Sep-Oct;12(5):487–493. doi: 10.1016/0143-4004(91)90025-b. [DOI] [PubMed] [Google Scholar]
  22. Tóth A., Arató G., Szepesi J., Hajdu K., Szigetvári I., László J. Tetraploidy in human placenta. A dilemma in molar and non-molar pregnancies. Gynecol Obstet Invest. 1992;33(3):153–156. doi: 10.1159/000294870. [DOI] [PubMed] [Google Scholar]
  23. Yabe N., Maeda T., Kashiwagi N., Obata F. Genetic analysis of hydatidiform moles utilizing the oligonucleotide-DNA typing of the HLA-DRB gene. Placenta. 1994 Jul;15(5):541–549. doi: 10.1016/s0143-4004(05)80422-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES