Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1986 Jul;39(7):722–727. doi: 10.1136/jcp.39.7.722

Effects of hyperglycaemia and sorbitol accumulation on erythrocyte deformability in diabetes mellitus.

D Bareford, P E Jennings, P C Stone, S Baar, A H Barnett, J Stuart
PMCID: PMC500031  PMID: 3090107

Abstract

Erythrocyte deformability was studied in a total of 83 poorly controlled diabetics (mean blood glucose 12.2 mmol/l) who were divided into three groups, each with matched healthy controls. There was no appreciable difference between diabetics and matched controls regarding the filtration of erythrocytes through 3 micron diameter straight channel pores (25 diabetics) or tortuous channel pores (28 diabetics), or for the measurement of erythrocyte elongation over a range of osmolalities in the Ektacytometer (30 diabetics). When erythrocytes from 17 additional diabetics and 17 healthy controls were incubated for two hours at 37 degrees C in hyperglycaemic (50 mmol glucose/l) buffer, however, there was a considerable reduction in erythrocyte filterability for both diabetics and controls in parallel with an increase in erythrocyte sorbitol concentration. This loss of filterability was prevented by the addition of an aldose reductase inhibitor (Sorbinil). High glucose concentrations (congruent to 50 mmol/l) impair the filterability of erythrocytes through 3 micron pores, and the intracellular accumulation of sorbitol in poorly controlled outpatients is therefore unlikely to have a major adverse effect on erythrocyte rheology in diabetes mellitus.

Full text

PDF
722

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Johnston R. B., Jr, Smith D. H. Human serum activities against Hemophilus influenzae, type b. J Clin Invest. 1972 Jan;51(1):31–38. doi: 10.1172/JCI106793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bock H. A., Flückiger R., Berger W. Real and artefactual erythrocyte swelling in hyperglycaemia. Diabetologia. 1985 Jun;28(6):335–338. doi: 10.1007/BF00283139. [DOI] [PubMed] [Google Scholar]
  3. Chylack L. T., Jr, Kinoshita J. H. A biochemical evaluation of a cataract induced in a high-glucose medium. Invest Ophthalmol. 1969 Aug;8(4):401–412. [PubMed] [Google Scholar]
  4. Compagnucci P., Cartechini M. G., Bolli G., Cataliotti R. S., Pellei L., Cirotto C., De Feo P., Santeusanio F., Brunetti P. Hyperglycemia alters the physico-chemical properties of proteins in erythrocyte membranes of diabetic patients. Horm Metab Res. 1983 Jun;15(6):263–268. doi: 10.1055/s-2007-1018691. [DOI] [PubMed] [Google Scholar]
  5. Davidson R. J., Evan-Wong L. A., Lean M. E. The Coulter MCV in diabetic ketoacidosis. Clin Lab Haematol. 1981;3(1):90–91. [PubMed] [Google Scholar]
  6. Evan-Wong L. A., Davidson R. J. Raised Coulter mean corpuscular volume in diabetic ketoacidosis, and its underlying association with marked plasma hyperosmolarity. J Clin Pathol. 1983 Mar;36(3):334–336. doi: 10.1136/jcp.36.3.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feo C. J., Nossal M., Jones E., Bessis M. Une nouvelle technique d'étude de la physiologie des globules rouges: la mesure de leur déformabilité en fonction de l'osmolarité. Résultats obtenus par un Ektacytomètre automatisé sur du sang normal et dans différentes anémies hémolytiques. C R Seances Acad Sci III. 1982 Dec 6;295(12):687–691. [PubMed] [Google Scholar]
  8. Gabbay K. H. Role of sorbitol pathway in neuropathy. Adv Metab Disord. 1973;2(Suppl):417–432. doi: 10.1016/b978-0-12-027362-1.50049-2. [DOI] [PubMed] [Google Scholar]
  9. Hanss M. Erythrocyte filtrability measurement by the initial flow rate method. Biorheology. 1983;20(2):199–211. doi: 10.3233/bir-1983-20209. [DOI] [PubMed] [Google Scholar]
  10. Juhan I., Buonocore M., Vovan L., Durand F., Calas M. F., Moulin J. P., Vague P. Filtrabilité des hématies chez les diabétiques. Influence de la glycémie et variations après connection à un pancréas artificiel. Nouv Presse Med. 1979 Dec 24;8(50):4083–4085. [PubMed] [Google Scholar]
  11. Juhan I., Vague P., Buonocore M., Moulin J. P., Calas M. F., Vialettes B., Verdot J. J. Effects of insulin on erythrocyte deformability in diabetics--relationship between erythrocyte deformability and platelet aggregation. Scand J Clin Lab Invest Suppl. 1981;156:159–164. doi: 10.3109/00365518109097451. [DOI] [PubMed] [Google Scholar]
  12. Karlish S. J., Lieb W. R., Ram D., Stein W. D. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions. Biochim Biophys Acta. 1972 Jan 17;255(1):126–132. doi: 10.1016/0005-2736(72)90014-4. [DOI] [PubMed] [Google Scholar]
  13. Kovacs I. B., O'Grady J. Prostacyclin increases filterability of normal and rigidified human red blood cells in vitro. Agents Actions. 1984 Feb;14(2):306–310. doi: 10.1007/BF01966658. [DOI] [PubMed] [Google Scholar]
  14. Legge D. G., Shortman K. The effect of pH on the volume, density and shape of erythrocytes and thymic lymphocytes. Br J Haematol. 1968 Mar;14(3):323–335. doi: 10.1111/j.1365-2141.1968.tb01503.x. [DOI] [PubMed] [Google Scholar]
  15. Malone J. I., Knox G., Benford S., Tedesco T. A. Red cell sorbitol: an indicator of diabetic control. Diabetes. 1980 Nov;29(11):861–864. doi: 10.2337/diab.29.11.861. [DOI] [PubMed] [Google Scholar]
  16. Malone J. I., Knox G., Harvey C. Sorbitol accumulation is altered in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1984 Nov;27(5):509–513. doi: 10.1007/BF00290385. [DOI] [PubMed] [Google Scholar]
  17. Miller J. A., Gravallese E., Bunn H. F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J Clin Invest. 1980 Apr;65(4):896–901. doi: 10.1172/JCI109743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morrison A. D., Clements R. S., Jr, Travis S. B., Oski F., Winegrad A. I. Glucose utilization by the polyol pathway in human erythrocytes. Biochem Biophys Res Commun. 1970 Jul 13;40(1):199–205. doi: 10.1016/0006-291x(70)91066-1. [DOI] [PubMed] [Google Scholar]
  19. Oughton J., Barnes A. J., Kohner E. M. Diabetes mellitus: its effect on the flow properties of blood. Horm Metab Res Suppl. 1981;11:112–120. [PubMed] [Google Scholar]
  20. SEN A. K., WIDDAS W. F. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160:392–403. doi: 10.1113/jphysiol.1962.sp006854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmid-Schönbein H., Volger E. Red-cell aggregation and red-cell deformability in diabetes. Diabetes. 1976;25(2 Suppl):897–902. [PubMed] [Google Scholar]
  22. Travis S. F., Morrison A. D., Clements R. S., Jr, Winegrad A. I., Oski F. A. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. J Clin Invest. 1971 Oct;50(10):2104–2112. doi: 10.1172/JCI106704. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES