Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2016 Jul 29;4(8):apps.1600021. doi: 10.3732/apps.1600021

New development and validation of 50 SSR markers in breadfruit (Artocarpus altilis, Moraceae) by next-generation sequencing1

Fabien De Bellis 2,5, Roger Malapa 3, Valérie Kagy 4, Stéphane Lebegin 4, Claire Billot 2, Jean-Pierre Labouisse 2
PMCID: PMC5001855  PMID: 27610273

Abstract

Premise of the study:

Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars.

Methods and Results:

A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19.

Conclusions:

The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management.

Keywords: Artocarpus altilis, breadfruit, high-throughput sequencing, Illumina, microsatellites, Moraceae


Breadfruit (Artocarpus altilis (Parkinson) Fosberg, Moraceae) is a multipurpose tree crop with a great potential for increasing food security, thanks to its nutritious and starchy fruit (Ragone, 1997). In the Pacific Islands, it is a traditional staple crop, typically grown in backyards and small holdings. Breadfruit’s wild progenitor, A. camansi Blanco, is a native species of New Guinea where the first steps of breadfruit domestication occurred. Pacific seafarers migrated eastward carrying breadfruit in the form of seeds or cuttings (Kirch, 1997). Other events, such as accumulated somatic mutations and meiotic defects in diploid genomes of A. altilis, resulted in seedless triploid cultivars that predominate in eastern Polynesia (Zerega et al., 2004). Witherup et al. (2013) developed simple sequence repeat (SSR) loci from microsatellite-enriched libraries and validated 25 of them across a large number of A. altilis cultivars, wild congeners, and relatives. This traditional SSR isolation approach is a cost- and labor-intensive process that requires repeat enrichment, cloning, and Sanger sequencing. Next-generation sequencing (NGS) technologies allow a good coverage of large genomes, cost-effective identification, and rapid characterization of hundreds of SSRs in nonmodel organisms without previous genomic resources (Zalapa et al., 2012). Gardner et al. (2015) used this technology to develop 15 chloroplast SSRs from transcriptome data of Artocarpus spp. We report here on the development and validation of a new set of 50 nuclear SSR markers for breadfruit and related species using NGS Illumina technology.

METHODS AND RESULTS

Leaf fragments of 41 samples of A. altilis (33 diploids, six triploids), A. camansi, and A. heterophyllus Lam. originating from Vanuatu, New Caledonia, French Polynesia, Tonga, Samoa, and the Mariana Islands were collected from living trees conserved in field genebanks (Appendix 1) and stored in a drying agent (silica gel) at room temperature. DNA was extracted according to the mixed alkyl trimethylammonium bromide (MATAB) protocol described by Risterucci et al. (2000). Total genomic DNA isolated from A. altilis ‘Novan’ (sample VUT002; National Center for Biotechnology Information [NCBI] BioSample SAMN04508170) was used to generate the library with the Nextera DNA Library Preparation Kit (Illumina, San Diego, California, USA) according to the manufacturer’s protocol. Paired-end sequencing was carried out at the Grand Plateau Technique Régional platform (Montpellier, France; http://www.gptr-lr-genotypage.com) on an Illumina MiSeq system using the MiSeq Reagent Kit version 3 (2 × 300 bp). The sequences were assembled using ABySS software (Simpson et al., 2009). SSRs were detected using MISA Perl script (Thiel et al., 2003) with search parameters set as follows: at least five repeats for dinucleotide motifs, four repeats for trinucleotide motifs, and three repeats for tetra-, penta-, and hexanucleotide motifs. Primers were designed with Primer3 software using standard settings (Rozen and Skaletsky, 1999). A total of 2,341,465 paired-end sequences were assembled into 1,281,784 contigs. Among them, 115,499 contigs exhibited at least one microsatellite locus and enabled us to define PCR primers on 46,504 contigs, totaling 47,607 SSR loci (Appendix S1 (11.6MB, txt) ). The cumulative length of these contigs was around 15.5 Mb, totaling approximately 6% of the sequence length generated in this study. Raw sequencing data were submitted to the NCBI Sequence Read Archive (accession SRP070931) under BioProject PRJNA312880.

As a first step, 96 loci were selected according to the following criteria for motif type, repeat length, and amplicon size. We firstly excluded dinucleotide motifs, because these are prone to enzyme slippage during amplification, which may make allele designation difficult (Guichoux et al., 2011). Only perfect motifs were selected, as they are more likely to follow the stepwise mutation model. We selected loci with lengths of 11 to 16 repeats, as recommended by van Asch et al. (2010). Lastly, we selected loci with amplicon sizes ranging from 100 to 400 bp to facilitate the construction of multiplex sets.

The 96 primer pairs were then tested for amplification with a subset made up of four samples (two A. altilis, one A. camansi, and one A. heterophyllus). Only 15 failed to amplify. The remaining 81 primer pairs were classified according to their polymorphism and the overall quality of the profile. Among them, we chose to select only 50 polymorphic single-locus markers with no ambiguity in allele size determination (Table 1). These 50 SSRs were assessed using the 41 samples listed in Appendix 1. For comparison, we genotyped the same samples with 18 SSRs developed by Witherup et al. (2013). PCR reactions were performed in a solution A (25-μL total volume) containing 2.5 μL of PCR buffer (10 mM Tris-HCl, 50 mM KCl, 2 mM MgCl2, 0.001% glycerol), 2.5 μL of dNTP (Jena Bioscience GmbH, Jena, Germany), 0.25 μL of MgCl2, 0.2 μL of 10 μM forward primer with an M13 tail at the 5′-end (5′-CACGACGTTGTAAAACGAC-3′), 0.25 μL of 10 μM reverse primer, 0.25 μL of fluorescently labeled M13-tail (6-FAM, NED, VIC, or PET [Applied Biosystems, Foster City, California, USA]), 0.1 units of Taq DNA polymerase (Sigma-Aldrich, St. Louis, Missouri, USA), 5 μL of template DNA (5 ng/μL), and 14 μL of H2O. The PCR conditions were as follows: an initial denaturation at 94°C for 5 min; 30 cycles at 94°C for 45 s, 55°C for 45 s, and 72°C for 1 min; and a final extension at 72°C for 10 min. PCR products were pooled in a solution B containing: 2 μL of 6-FAM, 2 μL of VIC, 2.5 μL of NED, and 3.5 μL of PET. From this solution B, a volume of 4 μL was taken and added to 10 μL of Hi-Di formamide and 0.12 μL of GeneScan 600 LIZ Size Standard and analyzed on an ABI 3500xL Genetic Analyzer (Life Technologies, Carlsbad, California, USA). Alleles were scored using GeneMapper version 4.1 software (Applied Biosystems). Basic statistics were computed using PowerMarker software (Liu and Muse, 2005).

Table 1.

Characteristics of 50 genomic SSRs developed in Artocarpus altilis.a

Locus Primer sequences (5′–3′) Repeat motif Allele size (bp) Ta (°C) GenBank accession no.
mAaCIR0016 F: TTGACCCCTAGATGACCC (AAAAG)8 119 53 KU129040
R: AGCCTTGAGCCCATGA
mAaCIR0019 F: TGACATTCCCGCAAAA (TTC)11 122 52 KU129037
R: AAGTCTTCTGTTCCTACTGACAA
mAaCIR0027 F: TGACTTCCAACCCAAAATC (TCT)13 134 53 KU129070
R: GTGGACTTACGATGTGAGGA
mAaCIR0033 F: CGGGTACAGGGTATTGGT (ATA)12 141 53 KU129028
R: AGGAGAGCGTTTGAGGAA
mAaCIR0034 F: AACAGCAATCACCTGAAAC (ATA)11 142 50 KU129032
R: TTGTTCGTCTCTATGTTCGT
mAaCIR0036 F: TTTATGGGAGTGTTTTAGTG (ATT)11 144 47 KU129023
R: CTCTTATATTGCTTGCTCC
mAaCIR0038 F: GGAAATTCTTCATCCTCCC (TTA)12 145 53 KU129029
R: CAAGATTGGCTGTTTGGTT
mAaCIR0047 F: TCCCATCATCATCACCTT (TAT)14 150 51 KU129045
R: AGCAATGACCATGCAAA
mAaCIR0048 F: CGAAATCGGAACAGAAAAC (AGA)11 151 53 KU129062
R: GTCCTTGGCTACTATAATCCCT
mAaCIR0049 F: TACATACAAGCCAACTTCCA (ATA)13 151 51 KU129035
R: CCTTTGTGAGGAAGACCA
mAaCIR0050 F: TTCCCTGCCTAGTTTTGTG (TTA)11 152 53 KU129052
R: AATAAAGCGCGGACTTACA
mAaCIR0053 F: GCAACACATTCATCAACA (TTA)13 153 48 KU129069
R: GACTCACCAAGACTTTATTACC
mAaCIR0075 F: CATTCTTGGGAAGAGTTGA (TAA)12 171 51 KU129072
R: ATAGCGGTGAAAATGGAA
mAaCIR0078 F: CTTCAACTATTACTACTGCTGCT (TAT)11 173 49 KU129025
R: CTGTTCAGGTTGGTGCT
mAaCIR0080 F: AACACGGCCTATTTTGGA (TTA)15 174 54 KU129067
R: GGCCATACAGGTTACGACA
mAaCIR0081 F: AATTGGCGGTATTCTATG (TAT)14 175 48 KU129058
R: GGAGGCAGATAAATTAGAAA
mAaCIR0089 F: CCTGAGTAGGACAAAGACTGAA (GAAAA)8 183 53 KU129041
R: ATTGCGCTTTTCTTCCC
mAaCIR0090 F: GGGTGTCCTCGCCTC (AAG)11 184 52 KU129059
R: GGTGGATCATTCAGCAAA
mAaCIR0097 F: TCTCCGGTAAGGAAGGG (TTA)11 191 53 KU129042
R: CCGAAAGTTACCAACCAAG
mAaCIR0098 F: GACTAGAATGAAGTTAGGTTTG (AAT)16 192 47 KU129061
R: ATGCCTACCAAGGTTTT
mAaCIR0099 F: CCTGTTACGTTTCCTCC (ATGT)13 192 48 KU129026
R: ACAATTAGACCTCAATGGAT
mAaCIR0104 F: AAAATTGTGTTCCAGCCA (TAA)15 196 52 KU129071
R: CGTTTACAAAAGGGTAGGG
mAaCIR0108 F: CAATATAGCAGGCACTAATTCA (AAT)11 199 51 KU129049
R: TCTTCTTTCTCTCGTTCGTT
mAaCIR0111 F: TGCAGGCATCACGAAAC (TTC)16 202 54 KU129065
R: CTTCTGCATGAGCGGTG
mAaCIR0113 F: CCAGTAAGCTCCTTTACTACCA (AAT)11 204 53 KU129050
R: GCCAAGAGCCACGTAAA
mAaCIR0115 F: ACAGCTTTGCACCGACAC (ATA)12 205 55 KU129030
R: GCCCTCAACCACCCC
mAaCIR0121 F: GTGAGAGAATTTGAGTGATGTG (ATA)15 212 52 KU129054
R: GGAAATCCACTACCCACC
mAaCIR0127 F: TGATTCTCTCTTTACAGGCAC (AAG)13 218 52 KU129047
R: GCTCAGGTGCTTACTTGTTC
mAaCIR0128 F: CAACCACTGATGGAGATAG (ATA)12 219 48 KU129046
R: ACAACACCGTTTACTGAAG
mAaCIR0129 F: TTGCGGGACAGTGATTT (ATT)15 221 52 KU129048
R: GTACGGGTTTTGGGAGAG
mAaCIR0130 F: ACACCTACCTCTTCGGG (TTC)12 223 50 KU129056
R: AGGTCTAATCCCAACCCT
mAaCIR0134 F: AGCTGCCAATGATCCC (TTA)11 228 52 KU129044
R: ATGTGAAAAGGTTGGATTTG
mAaCIR0141 F: TCAAGCCCCTCACTCAA (AAT)11 235 53 KU129057
R: ATGGCATAGCACAACACAA
mAaCIR0145 F: GAACAGTGGAGTGCTTGGT (TAT)14 239 53 KU129043
R: GTGGATGTTTGCCATGAA
mAaCIR0146 F: CTTGCACCATCGTCATTT (ATT)13 239 52 KU129066
R: GTTAATTGGAAGTTGTGTCTCC
mAaCIR0147 F: TGGCAAGAAAAGCCAAA (TCT)11 241 53 KU129024
R: GTTTCAACCACAGTCCAAAA
mAaCIR0149 F: CGACCGGGACCTAACA (ATG)11 243 53 KU129038
R: ACCTGGTGTCATTATCGTTTT
mAaCIR0152 F: TAGTTCTGGTATGGCATTTT (TTA)16 246 49 KU129051
R: AAAGGCACAGGGACTAAC
mAaCIR0154 F: TCGAGGCCCTTGTTG (AAT)11 250 52 KU129064
R: GGAAATTCACCTTTCCTTG
mAaCIR0164 F: GTTATCCGGCACCACC (TAA)15 265 52 KU129031
R: GAGTTAGGCAAAAGGGACA
mAaCIR0167 F: AAGTGTTTGACAATGTGGTTAG (TTA)14 267 51 KU129055
R: ATGGAGCCTTGCTTTTG
mAaCIR0169 F: GAAGCTATTTTCAAGGGA (TAT)14 270 47 KU129063
R: ATGTAAGGAAGTGTAGCAAA
mAaCIR0172 F: GCTGTGAGAATGGTGTGG (TTA)11 276 52 KU129033
R: TCCGTCTTCGTACTGGTG
mAaCIR0178 F: CCAGACCCAATCAACCA (AAT)11 283 53 KU129034
R: CAAGGACTCGCCCAAA
mAaCIR0179 F: GTAGCACATGGCCCTACTC (ATA)13 284 53 KU129053
R: ATATACCCGTTGATGCCC
mAaCIR0192 F: TGGGCTATTAAATTGGACTTTGG (ATT)12 298 57 KU129068
R: GCATCATGTTTGATTGCAGTTT
mAaCIR0193 F: ACAAACCAACTCCGCCT (ATT)11 298 53 KU129060
R: GCCAGGGACGCATTT
mAaCIR0195 F: AAAAGACCAGCCAAATCC (AAT)11 313 52 KU129039
R: TTGCTTTTCACGCTCTTC
mAaCIR0204 F: TTTAGGGTCCGTTGAAGA (TAT)11 330 50 KU129027
R: GAAGTCTTGTTATTTGTGGAAG
mAaCIR0205 F: TTAATAGGGCTTCTTCCCTT (AAG)11 337 52 KU129036
R: CACTGTGTTGATTGATCCC

Note: Ta = annealing temperature.

a

Additional information can be found in TropGeneDB, a multitropical crop information system, hosted by the SouthGreen bioinformatics platform (http://tropgenedb.cirad.fr/).

Of the 50 loci assessed, all amplified and were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two (mAaCIR0167) to 19 (mAaCIR0121), with an average of seven alleles per locus (Table 2). When genotyping the samples with 18 of the SSRs developed by Witherup et al. (2013), we obtained similar results, but with a smaller number of alleles, ranging from one (MAA3) to 10 (MAA156) with an average of six alleles per locus (Appendix 2).

Table 2.

Genetic results of the 50 newly developed SSR markers of Artocarpus altilis and congeners.

Diploid A. altilis (n = 33) A. camansi (n = 1) A. heterophyllus (n = 1)
Vanuatu (n = 27) New Caledonia (n = 6) Triploid A. altilis (n = 6)
Locus Obs A Allele size range (bp)a Ho He HWEb Obs A Allele size range (bp)a Ho He Obs A Allele size range (bp)a % Hetc IndDisd A Allele size range (bp)a A Allele size range (bp)a PIC
mAaCIR0016 25 6 93–122 0.258 0.646 * 5 3 92–122 0.600 0.549 6 3 97–122 50.0 0/3/3 1 104 0.66
mAaCIR0019 27 3 108–120 0.545 0.478 ns 6 1 117 0.000 0.000 6 3 102–120 50.0 3/0/3 1 108 1 104 0.44
mAaCIR0027 27 9 122–165 0.879 0.754 * 6 3 134–162 0.833 0.586 6 8 119–165 100.0 3/3/0 1 122 0.75
mAaCIR0033 27 6 128–149 0.545 0.708 * 6 4 137–146 1.000 0.612 6 3 134–146 66.7 0/4/2 1 134 2 123–135 0.73
mAaCIR0034 24 7 125–152 0.500 0.692 * 5 3 125–139 0.600 0.549 4 5 131–164 100.0 3/1/0 1 125 0.70
mAaCIR0036 26 8 132–156 0.781 0.766 * 5 4 137–150 0.400 0.419 6 4 122–156 83.3 0/5/1 1 144 0.77
mAaCIR0038 26 8 131–162 0.844 0.779 ns 6 3 131–153 0.833 0.540 6 4 134–156 50.0 0/3/3 0.75
mAaCIR0047 26 6 132–151 0.625 0.591 ns 5 2 132–147 0.200 0.162 6 6 135–163 100.0 3/3/0 1 135 0.53
mAaCIR0048 27 3 137–145 0.485 0.376 ns 6 1 137 0.000 0.000 6 2 137–142 33.3 0/2/4 1 136 2 115–124 0.36
mAaCIR0049 25 10 140–171 0.484 0.797 * 5 4 143–159 0.600 0.644 6 4 140–162 50.0 2/1/3 1 179 1 122 0.83
mAaCIR0050 22 6 147–166 0.857 0.685 ns 4 3 154–166 0.750 0.529 5 4 147–166 80.0 2/2/1 1 154 1 171 0.67
mAaCIR0053 27 15 141–191 0.909 0.805 ns 5 4 148–185 1.000 0.653 6 4 151–179 100.0 0/6/0 1 148 1 179 0.83
mAaCIR0075 25 7 162–192 0.516 0.584 ns 4 2 162–168 0.750 0.439 6 3 168–192 100.0 0/6/0 1 162 1 158 0.62
mAaCIR0078 25 3 158–170 0.355 0.302 ns 5 1 158 0.000 0.000 6 2 158–170 33.3 0/2/4 1 158 2 147–166 0.29
mAaCIR0080 25 15 146–199 0.806 0.835 * 5 5 146–171 0.800 0.680 6 7 149–196 83.3 5/0/1 1 211 0.85
mAaCIR0081 13 5 157–179 0.889 0.700 * 5 4 157–173 100.0 2/3/0 1 175 1 149 0.73
mAaCIR0089 13 2 170–180 0.053 0.470 * 5 2 170–180 0.000 0.256 6 2 170–180 50.0 0/3/3 1 165 1 170 0.41
mAaCIR0090 27 3 174–180 0.545 0.578 ns 6 3 174–180 0.833 0.586 6 3 171–177 100.0 0/6/0 1 177 1 166 0.57
mAaCIR0097 26 2 188–197 0.531 0.435 ns 5 1 188 0.000 0.000 6 4 188–197 83.3 3/2/1 1 188 0.32
mAaCIR0098 9 6 174–194 0.615 0.763 ns 2 2 180–189 0.000 0.250 4 4 162–192 100.0 2/2/0 1 162 0.80
mAaCIR0099 25 9 171–207 0.903 0.836 * 6 3 171–195 0.667 0.457 6 4 171–195 100.0 3/3/0 1 183 0.83
mAaCIR0104 26 11 177–216 0.813 0.715 ns 5 4 177–207 0.400 0.419 5 5 182–195 100.0 0/5/0 1 173 0.71
mAaCIR0108 22 9 188–228 0.821 0.814 * 5 4 198–213 1.000 0.622 5 6 192–216 100.0 2/3/0 1 188 1 176 0.82
mAaCIR0111 26 10 169–206 0.781 0.752 ns 5 3 184–206 0.400 0.308 6 6 175–197 100.0 3/3/0 1 200 2 175–177 0.75
mAaCIR0113 8 4 201–210 0.462 0.462 ns 2 2 195–204 0.500 0.281 3 3 195–207 66.7 0/2/1 1 195 0.50
mAaCIR0115 27 6 180–205 0.818 0.757 ns 6 3 180–201 0.167 0.417 6 3 180–214 83.3 0/5/1 1 201 2 180–201 0.72
mAaCIR0121 23 19 198–252 0.759 0.800 ns 5 7 210–243 1.000 0.747 5 8 231–252 100.0 4/1/0 0.84
mAaCIR0127 27 8 203–243 0.727 0.590 ns 6 3 208–226 1.000 0.601 6 3 208–226 66.7 3/1/2 1 206 1 200 0.60
mAaCIR0128 25 9 197–245 0.806 0.805 ns 5 4 209–232 0.400 0.419 6 6 197–227 83.3 2/3/1 1 200 1 218 0.83
mAaCIR0129 22 7 195–223 0.643 0.788 * 5 3 204–232 1.000 0.591 4 6 195–210 75.0 3/0/1 1 210 0.78
mAaCIR0130 27 4 219–228 0.697 0.705 ns 6 2 219–228 0.000 0.231 6 3 219–228 83.3 0/5/1 1 222 0.64
mAaCIR0134 24 9 215–249 0.733 0.786 ns 5 4 215–246 0.800 0.648 5 4 215–252 80.0 2/2/1 1 215 1 210 0.81
mAaCIR0141 25 5 228–243 0.806 0.643 ns 5 2 240–243 1.000 0.500 6 4 228–243 100.0 0/6/0 1 213 1 252 0.65
mAaCIR0145 26 5 215–245 0.469 0.623 * 5 3 215–236 1.000 0.561 6 3 215–242 50.0 0/3/3 1 224 0.63
mAaCIR0146 25 5 232–245 0.871 0.733 * 5 3 236–242 1.000 0.591 6 3 232–245 33.3 2/0/4 1 236 1 214 0.75
mAaCIR0147 26 4 229–242 0.844 0.680 * 6 3 236–242 1.000 0.590 6 4 229–242 100.0 2/4/0 1 229 0.66
mAaCIR0149 26 5 227–239 0.250 0.479 * 6 2 230–236 0.333 0.257 6 2 227–236 16.7 0/1/5 1 239 0.44
mAaCIR0152 26 8 222–247 0.719 0.721 * 5 3 228–234 0.800 0.538 6 5 216–238 100.0 2/4/0 2 259–262 0.70
mAaCIR0154 23 6 238–258 0.931 0.742 ns 5 5 238–261 1.000 0.669 5 6 231–258 100.0 2/3/0 1 243 1 225 0.75
mAaCIR0164 6 5 252–270 0.727 0.704 ns 3 4 258–270 0.333 0.522 5 5 243–270 60.0 2/1/2 1 243 0.76
mAaCIR0167 1 2 247–265 0.000 0.281 ns 1 1 247 0.000 0.000 1 1 247 0.0 0/0/1 0.36
mAaCIR0169 22 5 249–273 0.893 0.690 ns 5 4 249–270 1.000 0.622 6 4 249–273 66.7 2/2/2 0.65
mAaCIR0172 23 6 261–279 0.379 0.543 ns 5 3 264–276 0.800 0.507 6 3 264–276 100.0 2/4/0 1 277 0.60
mAaCIR0178 11 6 271–292 0.750 0.755 ns 4 2 277–280 0.750 0.439 4 5 271–289 100.0 1/3/0 0.72
mAaCIR0179 25 7 268–285 0.774 0.774 ns 5 3 268–288 0.400 0.403 5 5 268–282 100.0 4/1/0 1 274 0.77
mAaCIR0192 25 7 285–303 0.613 0.690 ns 5 3 285–297 0.800 0.585 6 4 282–294 83.3 0/5/1 1 285 0.67
mAaCIR0193 22 9 294–322 0.964 0.775 * 5 2 300–306 0.200 0.162 5 6 291–312 100.0 4/1/0 1 283 0.76
mAaCIR0195 20 10 293–317 0.538 0.806 * 5 3 293–309 0.000 0.448 5 4 290–305 60.0 2/1/2 0.79
mAaCIR0204 25 5 320–332 0.645 0.571 ns 5 2 320–329 0.200 0.353 6 3 323–329 66.7 0/4/2 1 323 1 301 0.58
mAaCIR0205 26 6 332–352 0.781 0.720 * 5 2 329–332 1.000 0.500 6 5 329–341 50.0 3/0/3 1 328 0.73

Note: A = number of alleles; He = expected heterozygosity; Ho = observed heterozygosity; HWE = Hardy–Weinberg equilibrium; Obs = number of observations; PIC = polymorphism information content value, calculated on diploid data, as described by Botstein et al. (1980).

a

Including the 19-bp M13-tail.

b

To test HWE, a χ2 goodness-of-fit method was used; * = significant at P < 0.05, ns = no significant deviation from HWE.

c

Due to allele ambiguity in the triploids, the He:Ho ratio is replaced by the percentage of heterozygous genotypes.

d

Number of triploid individuals with three, two, or one allele(s).

The Hardy–Weinberg equilibrium (HWE) test was only performed on diploids from Vanuatu and revealed that 20 of the new SSRs exhibited significant deviation from HWE (Table 2). This is not surprising as we did not sample populations but cultivated varieties, most of them clonally propagated and maintained in the form of a few trees planted in backyards or gardens. In the triploids, we calculated the percentage of heterozygous individuals and gave the number of individuals harboring one, two, or three alleles for each microsatellite locus. For 60% of the microsatellite loci, we observed unambiguous genotypes (i.e., with three alleles), ranging from one individual (mAaCIR0178) to five individuals (mAaCIR0080). Fifty percent of the loci were highly informative with a polymorphism information content value (PIC; Botstein et al., 1980), calculated on diploid data, greater than 0.7; only seven had a PIC less than 0.5, with a minimum value of 0.29 for mAaCIR0078. Although less informative, this latter category of loci may have characteristics, such as private alleles, useful for detecting admixture between species.

CONCLUSIONS

These 50 new nuclear SSR loci will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale and for gaining a better understanding of farmer management practices (seed or vegetative propagation methods, exchanges, and dispersal). They will help to optimize the management of national genebanks by identifying duplicates and guiding future collecting activities. Of the 47,607 SSR loci identified, a very large number of additional markers could be further developed to address future research needs (genetic mapping, QTL, and association studies).

Supplementary Material

Supplementary Material 1

Appendix 1.

Accession information for this study.a

Genebank location Species Original label Cultivar name Country of collection Island Village (County town)
VARTC/Santo A. altilis VUT001 Tiomal Vanuatu Malekula Rano
VARTC/Santo A. altilis VUT002* Novan Vanuatu Malekula Rano
VARTC/Santo A. altilis VUT003 Baewok Vanuatu Malekula Rano
VARTC/Santo A. altilis VUT013 Wawahisao Vanuatu Malo Avunatari
VARTC/Santo A. altilis VUT029 Namnerlap Vanuatu Mota Lava Gnerenigmen
VARTC/Santo A. altilis VUT061 Gortsaro Vanuatu Santo Port Olry
VARTC/Santo A. altilis VUT102 Brobwe Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT103 Endoum Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT106 Koveuteap Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT107 Koveutniewe Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT109 Limbwedeng Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT118 Shienbase Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT127 Temelopsa Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT130 Teupanmei Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT131 Tewakon Vanuatu Ambrym Port Vato
VARTC/Santo A. altilis VUT140 Matualelei Vanuatu Efate Epule
VARTC/Santo A. altilis VUT141 Nako Vanuatu Efate Tokararik
VARTC/Santo A. altilis VUT143 Nambatav-ani-Franck Vanuatu Efate Epule
VARTC/Santo A. altilis VUT148 Lof Vanuatu Efate Erakor
VARTC/Santo A. altilis VUT149 Naliu Vanuatu Efate Erakor
VARTC/Santo A. altilis VUT150 Nasul Vanuatu Efate Erakor
VARTC/Santo A. altilis VUT153 Pakala Vanuatu Efate Mele
VARTC/Santo A. altilis VUT161 Aveloloa Vanuatu Efate Pohi
VARTC/Santo A. altilis VUT167 Betima Vanuatu Malekula Brenwei
VARTC/Santo A. altilis VUT200 Nakut-ulcecerea Vanuatu Nguna Rewoka
VARTC/Santo A. altilis VUT205 Narongrong Vanuatu Nguna Rewoka
VARTC/Santo A. altilis VUT212 Napeere Vanuatu Nguna Urapua
IAC/Saint-Louis A. altilis Kea Kea Tonga Tongatapu
IAC/Saint-Louis A. altilis Hamoa Hamoa French Polynesia Tahaa, Society Islands
IAC/Saint-Louis A. altilis Ma’afala B3 Ma’afala Samoa
IAC/Saint-Louis A. altilis Lemae B5 Lemae Mariana Islands
IAC/Saint-Louis A. altilis Rotuma 15C2 Rotuma French Polynesia Tahaa, Society Islands
IAC/Saint-Louis A. altilis Puo Puo Tonga Tongatapu
IAC/Saint-Louis A. altilis A1 New Caledonia Grande Terre Tiéti (Poindimié)
IAC/Saint-Louis A. altilis A2 New Caledonia Grande Terre Parawié (Houailou)
IAC/Saint-Louis A. altilis A3 New Caledonia Grande Terre Parawié (Houailou)
IAC/Saint-Louis A. altilis A7 New Caledonia Grande Terre Tyé (Touho)
IAC/Saint-Louis A. altilis A9 New Caledonia Grande Terre Sainte-Marie (Pouébo)
IAC/Pocquereux A. altilis A11 New Caledonia Maré Medhu
IAC/Pocquereux A. camansi A13-camansi New Caledonia Grande Terre Vallée des Colons (Nouméa)
IAC/Pocquereux A. heterophyllus heterophyllus New Caledonia Grande Terre Appala (Koumac)

Note: — = not available.

a

The study was conducted with 41 living accessions forming two subsets of the collections of the Vanuatu Agricultural Research and Technical Centre (VARTC) and the Institut Agronomique néo-Calédonien (IAC). The VARTC genebank is located on the island of Santo, Vanuatu (15.453°S, 167.184°E). The 27 VARTC accessions (VUT label) were collected during two surveys conducted across the Vanuatu archipelago in 2004–2005 by Navarro et al. (2007) and in 2009 by Mies (no published data) with the support of the Pacific Plant Genetic Resources Network under the auspices of the Pacific Community (SPC). The 14 IAC accessions are conserved at the research stations of Saint-Louis (22.232°S, 166.538°E) and Pocquereux (21.731°S, 165.886°E) in New Caledonia. They comprise six accessions of A. altilis, one A. heterophyllus, and one A. camansi, all of them collected in New Caledonia, and six seedless cultivars sent to IAC by the National Tropical Botanical Garden of Hawaii (NTBG) from the Kahanu Garden, Maui Island in 1999. Leaf fragments were collected from living trees conserved in the field genebanks and stored in a drying agent (silica gel) at room temperature before performing DNA extraction.

*

Sample used to generate the genomic library (NCBI BioSample SAMN04508170).

Appendix 2.

Genetic properties of 18 SSR markers developed by Witherup et al. (2013) tested on Artocarpus altilis and congeners.

Diploid A. altilis (n = 33) A. camansi (n = 1) A. heterophyllus (n = 1)
Vanuatu (n = 27) New Caledonia (n = 6) Triploid A. altilis (n = 6)
Locus Obs A Allele size range (bp)a Ho He HWEb Obs A Allele size range (bp)a Ho He Obs A Allele size range (bp)a % Hetc IndDisd A Allele size range (bp)a A Allele size range (bp)a PIC
MAA3 26 1 234 0.000 0.000 5 1 234 0.000 0.000 6 1 234 0.0 0/0/6 1 234 1 236 0.05
MAA40 26 6 195–210 0.875 0.810 * 5 2 208–210 0.800 0.461 6 3 201–210 100.0 0/6/0 1 199 1 189 0.81
MAA54a 26 8 191–212 0.813 0.819 ns 5 5 191–212 1.000 0.700 4 5 191–212 75.0 0/3/1 1 196 1 181 0.83
MAA54b 25 3 222–232 0.613 0.613 ns 5 2 222–224 0.800 0.461 4 3 220–232 75.0 1/2/1 1 224 1 217 0.57
MAA71 26 9 172–195 0.875 0.779 ns 5 5 180–198 1.000 0.669 5 6 170–195 100.0 2/3/0 1 174 2 142–183 0.79
MAA85 22 5 174–187 0.679 0.707 ns 5 3 178–187 0.200 0.385 5 3 174–179 40.0 0/2/3 0.69
MAA96 23 7 220–230 0.310 0.727 * 5 4 220–228 0.800 0.585 6 5 222–230 83.3 0/5/1 1 226 0.76
MAA122 25 7 297–311 0.774 0.717 ns 5 3 305–311 1.000 0.607 5 4 297–309 100.0 0/5/0 1 299 1 272 0.73
MAA135 24 9 287–312 0.900 0.806 ns 5 4 289–308 1.000 0.622 4 4 287-308 100.0 3/1/0 1 318 1 370 0.81
MAA140 27 8 150–179 0.545 0.774 * 6 4 150–169 0.833 0.586 6 3 165–179 83.3 2/3/1 1 159 1 151 0.78
MAA145 23 6 294–323 0.679 0.690 * 5 4 294–308 0.800 0.632 5 5 305–323 100.0 2/3/0 1 286 1 294 0.71
MAA156 27 10 290–319 0.697 0.699 ns 6 4 290–311 1.000 0.680 6 4 295–324 83.3 5/0/1 1 292 1 292 0.72
MAA182 27 8 197–230 0.303 0.566 * 6 1 224 0.000 0.000 6 3 221–227 50.0 0/3/3 1 226 1 191 0.53
MAA201 26 4 281–300 0.406 0.573 ns 6 2 281–282 0.000 0.231 6 7 281–311 83.3 2/3/1 1 294 2 258–282 0.53
MAA219 24 4 279–291 0.733 0.607 ns 5 3 279–300 1.000 0.561 6 3 279–291 50.0 0/3/3 1 294 1 279 0.57
MAA251 26 3 190–208 0.625 0.536 ns 6 2 190–208 0.000 0.231 5 5 190–217 100.0 2/3/0 1 214 1 211 0.49
MAA287 27 7 204–241 0.242 0.683 * 6 1 212 0.000 0.000 6 5 200–228 83.3 3/2/1 1 196 2 196–228 0.63
MAA293 27 4 176–188 0.727 0.616 ns 6 3 176–184 1.000 0.590 6 3 178–184 83.3 0/5/1 1 180 1 184 0.56

Note: A = number of alleles; He = expected heterozygosity; Ho = observed heterozygosity; HWE = Hardy–Weinberg equilibrium; Obs = number of observations; PIC = polymorphism information content value, calculated on diploid data, as described by Botstein et al. (1980).

a

Including the 19-bp M13-tail.

b

To test HWE, a χ2 goodness-of-fit method was used; * = significant at P < 0.05, ns = no significant deviation from HWE.

c

Due to allele ambiguity in the triploids, the He:Ho ratio is replaced by the percentage of heterozygous genotypes.

d

Number of triploid individuals with three, two, or one allele(s).

LITERATURE CITED

  1. Botstein D., White R. L., Skolnick M., Davis R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32: 314–320. [PMC free article] [PubMed] [Google Scholar]
  2. Gardner E. M., Laricchia K. M., Murphy M., Ragone D., Scheffler B. E., Simpson S., Williams E. W., Zerega N. J. C. 2015. Chloroplast microsatellite markers for Artocarpus (Moraceae) developed from transcriptome sequences. Applications in Plant Sciences 3: 1500049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Guichoux E., Lagache L., Wagner S., Chaumeil P., Léger P., Lepais O., Lepoittevin C., et al. 2011. Current trends in microsatellite genotyping. Molecular Ecology Resources 11: 591–611. [DOI] [PubMed] [Google Scholar]
  4. Kirch P. V. 1997. The Lapita peoples: Ancestors of the Oceanic world, 203–212. Wiley-Blackwell, Cambridge, Massachussets, USA. [Google Scholar]
  5. Liu K., Muse S. V. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics (Oxford, England) 21: 2128–2129. [DOI] [PubMed] [Google Scholar]
  6. Navarro M., Malres S., Labouisse J. P., Roupsard O. 2007. Vanuatu breadfruit project: Survey on botanical diversity and traditional uses of Artocarpus altilis. In Taylor M. B., Woodend J., Ragone D. [eds.], Proceedings of the first international symposium on breadfruit research and development, Nadi, Fiji, April 16–19, 2007, 81–87. Acta Horticulturae, 757. IHSH, Louvain, Belgium [Google Scholar]
  7. Ragone D. 1997. Breadfruit. Artocarpus altilis (Parkinson) Fosberg. IPGRI, Rome, Italy. [Google Scholar]
  8. Risterucci A. M., Grivet L., N’Goran J. A. K., Pieretti I., Flament M. H., Lanaud C. 2000. A high-density linkage map of Theobroma cacao L. Theoretical and Applied Genetics 101: 948–955. [Google Scholar]
  9. Rozen S., Skaletsky H. J. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA. [DOI] [PubMed] [Google Scholar]
  10. Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J. M., Birol I. 2009. ABySS: A parallel assembler for short read sequence data. Genome Research 19: 1117–1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thiel T., Michalek W., Varshney R., Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422. [DOI] [PubMed] [Google Scholar]
  12. van Asch B., Pinheiro R., Pereira R., Alves C., Pereira V., Pereira F., Gusmão L., Amorim A. 2010. A framework for the development of STR genotyping in domestic animal species: Characterization and population study of 12 canine X-chromosome loci. Electrophoresis 31: 303–308. [DOI] [PubMed] [Google Scholar]
  13. Witherup C., Ragone D., Wiesner-Hanks T., Irish B., Scheffler B., Simpson S., Zee F., et al. 2013. Development of microsatellite loci in Artocarpus altilis (Moraceae) and cross-amplification in congeneric species. Applications in Plant Sciences 1: 1200423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zalapa J. E., Cuevas H., Zhu H., Steffan S., Senalik D., Zeldin E., McCown B., et al. 2012. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany 99: 193–208. [DOI] [PubMed] [Google Scholar]
  15. Zerega N. J. C., Ragone D., Motley T. J. 2004. Complex origins of breadfruit (Artocarpus altilis, Moraceae): Implications for human migrations in Oceania. American Journal of Botany 91: 760–766. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material 1

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES