Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 1;89(19):8943–8947. doi: 10.1073/pnas.89.19.8943

Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions.

H K Choi 1, L Won 1, J D Roback 1, B H Wainer 1, A Heller 1
PMCID: PMC50040  PMID: 1357658

Abstract

MN9D is an immortalized dopamine-containing neuronal hybrid cell line. When MN9D cells were coaggregated with primary embryonic cells of optic tectum, a brain region that does not receive a dopaminergic innervation, there was a marked reduction in their dopamine content, tyrosine hydroxylase immunoreactivity, and tyrosine hydroxylase mRNA. Similar reductions in dopamine content were produced by coaggregation with cells from embryonic thalamus, another brain region devoid of dopaminergic innervation. Coaggregation of MN9D cells with dopaminoceptive cells from the corpus striatum or the cortex did not have a demonstrable stimulatory effect on the dopamine content of MN9D cells. The decrease in MN9D dopamine content produced by optic tectum cells was not reversed by addition of corpus striatum cells. Thus, the MN9D hybrid cells are able to respond to an inhibitory factor(s) from cells derived from brain areas that are not targets for dopaminergic neurons. Catecholamine-producing PC12 cells did not respond in a similar manner, suggesting that the response of MN9D cells is a function of their mesencephalic origin. Given the selective response of MN9D cells to different brain cell populations, this hybrid cell line should facilitate investigations of cell-cell interactions in the central nervous system that may be involved in the expression of neurotransmitter phenotype and establishment of specific neuronal connections.

Full text

PDF
8943

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baier H., Bonhoeffer F. Axon guidance by gradients of a target-derived component. Science. 1992 Jan 24;255(5043):472–475. doi: 10.1126/science.1734526. [DOI] [PubMed] [Google Scholar]
  2. Banker G., Goslin K. Developments in neuronal cell culture. Nature. 1988 Nov 10;336(6195):185–186. doi: 10.1038/336185a0. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Choi H. K., Won L. A., Kontur P. J., Hammond D. N., Fox A. P., Wainer B. H., Hoffmann P. C., Heller A. Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res. 1991 Jun 21;552(1):67–76. doi: 10.1016/0006-8993(91)90661-e. [DOI] [PubMed] [Google Scholar]
  5. Coker G. T., 3rd, Vinnedge L., O'Malley K. L. Characterization of rat and human tyrosine hydroxylase genes: functional expression of both promoters in neuronal and non-neuronal cell types. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1341–1347. doi: 10.1016/s0006-291x(88)81022-2. [DOI] [PubMed] [Google Scholar]
  6. De Vitry F., Hillion J., Catelon J., Thibault J., Benoliel J. J., Hamon M. Dopamine increases the expression of tyrosine hydroxylase and aromatic amino acid decarboxylase in primary cultures of fetal neurons. Brain Res Dev Brain Res. 1991 Apr 24;59(2):123–131. doi: 10.1016/0165-3806(91)90092-w. [DOI] [PubMed] [Google Scholar]
  7. Denis-Donini S. Expression of dopaminergic phenotypes in the mouse olfactory bulb induced by the calcitonin gene-related peptide. Nature. 1989 Jun 29;339(6227):701–703. doi: 10.1038/339701a0. [DOI] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  10. Garber B. B., Moscona A. A. Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing brain. Dev Biol. 1972 Feb;27(2):217–234. doi: 10.1016/0012-1606(72)90099-1. [DOI] [PubMed] [Google Scholar]
  11. Gizang-Ginsberg E., Ziff E. B. Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-Fos. Genes Dev. 1990 Apr;4(4):477–491. doi: 10.1101/gad.4.4.477. [DOI] [PubMed] [Google Scholar]
  12. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammond D. N., Wainer B. H., Tonsgard J. H., Heller A. Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science. 1986 Dec 5;234(4781):1237–1240. doi: 10.1126/science.3775382. [DOI] [PubMed] [Google Scholar]
  14. Hankin M., Lund R. How do retinal axons find their targets in the developing brain? Trends Neurosci. 1991 Jun;14(6):224–228. doi: 10.1016/0166-2236(91)90118-e. [DOI] [PubMed] [Google Scholar]
  15. Heller A., Kontur P., Hoffmann P., Heller B. Quantitation of neurochemically identified neurons in reaggregate tissue cultures. J Neurosci Methods. 1988 Aug;25(1):83–90. doi: 10.1016/0165-0270(88)90123-9. [DOI] [PubMed] [Google Scholar]
  16. Hemmendinger L. M., Garber B. B., Hoffmann P. C., Heller A. Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1264–1268. doi: 10.1073/pnas.78.2.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoffmann P. C., Hemmendinger L. M., Kotake C., Heller A. Enhanced dopamine cell survival in reaggregates containing telencephalic target cells. Brain Res. 1983 Sep 12;274(2):275–281. doi: 10.1016/0006-8993(83)90705-9. [DOI] [PubMed] [Google Scholar]
  18. Hsiang J., Heller A., Hoffmann P. C., Mobley W. C., Wainer B. H. The effects of nerve growth factor on the development of septal cholinergic neurons in reaggregate cell cultures. Neuroscience. 1989;29(1):209–223. doi: 10.1016/0306-4522(89)90344-8. [DOI] [PubMed] [Google Scholar]
  19. Karin M. Too many transcription factors: positive and negative interactions. New Biol. 1990 Feb;2(2):126–131. [PubMed] [Google Scholar]
  20. Katz D. M. A catecholaminergic sensory neuron phenotype in cranial derivatives of the neural crest: regulation by cell aggregation and nerve growth factor. J Neurosci. 1991 Dec;11(12):3991–4002. doi: 10.1523/JNEUROSCI.11-12-03991.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kotake C., Hoffmann P. C., Heller A. The biochemical and morphological development of differentiating dopamine neurons co-aggregated with their target cells of the corpus striatum in vitro. J Neurosci. 1982 Sep;2(9):1307–1315. doi: 10.1523/JNEUROSCI.02-09-01307.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewis E. J., Harrington C. A., Chikaraishi D. M. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3550–3554. doi: 10.1073/pnas.84.11.3550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
  24. Matsuoka I., Mizuno N., Kurihara K. Cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by retinoic acid: increase of choline acetyltransferase activity and decrease of tyrosine hydroxylase activity. Brain Res. 1989 Nov 13;502(1):53–60. doi: 10.1016/0006-8993(89)90460-5. [DOI] [PubMed] [Google Scholar]
  25. Patterson P. H., Chun L. L. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol. 1977 Apr;56(2):263–280. doi: 10.1016/0012-1606(77)90269-x. [DOI] [PubMed] [Google Scholar]
  26. Rao M. S., Landis S. C. Characterization of a target-derived neuronal cholinergic differentiation factor. Neuron. 1990 Dec;5(6):899–910. doi: 10.1016/0896-6273(90)90350-o. [DOI] [PubMed] [Google Scholar]
  27. Roback J. D., Large T. H., Otten U., Wainer B. H. Nerve growth factor expression in the developing hippocampus isolated in vitro. Dev Biol. 1990 Feb;137(2):451–455. doi: 10.1016/0012-1606(90)90270-s. [DOI] [PubMed] [Google Scholar]
  28. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  29. Vernadakis A., Kentroti S. Opioids influence neurotransmitter phenotypic expression in chick embryonic neuronal cultures. J Neurosci Res. 1990 Jul;26(3):342–348. doi: 10.1002/jnr.490260311. [DOI] [PubMed] [Google Scholar]
  30. Walicke P. A. Novel neurotrophic factors, receptors, and oncogenes. Annu Rev Neurosci. 1989;12:103–126. doi: 10.1146/annurev.ne.12.030189.000535. [DOI] [PubMed] [Google Scholar]
  31. Walter J., Henke-Fahle S., Bonhoeffer F. Avoidance of posterior tectal membranes by temporal retinal axons. Development. 1987 Dec;101(4):909–913. doi: 10.1242/dev.101.4.909. [DOI] [PubMed] [Google Scholar]
  32. Wessels-Reiker M., Haycock J. W., Howlett A. C., Strong R. Vasoactive intestinal polypeptide induces tyrosine hydroxylase in PC12 cells. J Biol Chem. 1991 May 25;266(15):9347–9350. [PubMed] [Google Scholar]
  33. Won L., Heller A., Hoffmann P. C. Selective association of dopamine axons with their striatal target cells in vitro. Brain Res Dev Brain Res. 1989 May 1;47(1):93–100. doi: 10.1016/0165-3806(89)90111-9. [DOI] [PubMed] [Google Scholar]
  34. Won L., Price S., Wainer B. H., Hoffmann P. C., Bolam J. P., Greengard P., Heller A. Correlated light and electron microscopic study of dopaminergic neurons and their synaptic junctions with DARPP-32-containing cells in three-dimensional reaggregate tissue culture. J Comp Neurol. 1989 Nov 1;289(1):165–177. doi: 10.1002/cne.902890114. [DOI] [PubMed] [Google Scholar]
  35. Yamamori T., Fukada K., Aebersold R., Korsching S., Fann M. J., Patterson P. H. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science. 1989 Dec 15;246(4936):1412–1416. doi: 10.1126/science.2512641. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES