Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1996 Apr;49(4):290–294. doi: 10.1136/jcp.49.4.290

Single-tube nested PCR in the diagnosis of tuberculosis.

C M Chan 1, K Y Yuen 1, K S Chan 1, W C Yam 1, K H Yim 1, W F Ng 1, M H Ng 1
PMCID: PMC500452  PMID: 8655703

Abstract

AIMS: To evaluate the usefulness of a single-tube nested polymerase chain reaction (PCR) assay in the diagnosis of tuberculosis in 1497 pulmonary and 536 extrapulmonary specimens. METHODS: A single-tube nested PCR, utilising two sets of primers with different melting temperatures (88 degrees C for external primers; 70 degrees C for internal primers) to augment sensitivity and specificity without increasing the risk of amplicon contamination, was evaluated. Specimens were initially tested for the repetitive IS6110 sequences and if negative, retested for the universal 38 kilodalton sequence and for inhibitors. dUTP/Uracil-N-glycosylase and Instagene treatment were used to minimise contamination and the effect of inhibitors, respectively. RESULTS: Using culture as the gold standard, the overall sensitivity of the assay was 89% for pulmonary and 42% for extrapulmonary specimens. Sensitivity varied greatly with respect to sample type (92% for follow up specimens from a chest hospital and 70% for non-follow up specimens from a general hospital). The smear positivity rates were 15% for extrapulmonary specimens, and 69% and 45%, respectively, for follow up and non-follow up specimens from pulmonary sites. Specificity was 99.7%. Inhibitors were present more frequently in extrapulmonary than in pulmonary specimens (13.4% v 2.7%). CONCLUSION: Despite the high sensitivity of the PCR assay for the diagnosis of tuberculosis in pulmonary specimens, it was less effective in the extrapulmonary samples. This is probably because of the lower bacterial load in extrapulmonary specimens, the presence of more inhibitors adversely affecting the PCR assay and the higher volume of specimens used for culture.

Full text

PDF
290

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amicosante M., Richeldi L., Trenti G., Paone G., Campa M., Bisetti A., Saltini C. Inactivation of polymerase inhibitors for Mycobacterium tuberculosis DNA amplification in sputum by using capture resin. J Clin Microbiol. 1995 Mar;33(3):629–630. doi: 10.1128/jcm.33.3.629-630.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen A. B., Hansen E. B. Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular-weight protein of Mycobacterium tuberculosis. Infect Immun. 1989 Aug;57(8):2481–2488. doi: 10.1128/iai.57.8.2481-2488.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brisson-Noel A., Aznar C., Chureau C., Nguyen S., Pierre C., Bartoli M., Bonete R., Pialoux G., Gicquel B., Garrigue G. Diagnosis of tuberculosis by DNA amplification in clinical practice evaluation. Lancet. 1991 Aug 10;338(8763):364–366. doi: 10.1016/0140-6736(91)90492-8. [DOI] [PubMed] [Google Scholar]
  4. Ghossein R. A., Ross D. G., Salomon R. N., Rabson A. R. Rapid detection and species identification of mycobacteria in paraffin-embedded tissues by polymerase chain reaction. Diagn Mol Pathol. 1992 Sep;1(3):185–191. [PubMed] [Google Scholar]
  5. Grange J. M. The humoral immune response in tuberculosis: its nature, biological role and diagnostic usefulness. Adv Tuberc Res. 1984;21:1–78. [PubMed] [Google Scholar]
  6. Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol. 1993 Sep;31(9):2410–2416. doi: 10.1128/jcm.31.9.2410-2416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
  8. Lu C. Z., Qiao J., Shen T., Link H. Early diagnosis of tuberculous meningitis by detection of anti-BCG secreting cells in cerebrospinal fluid. Lancet. 1990 Jul 7;336(8706):10–13. doi: 10.1016/0140-6736(90)91519-g. [DOI] [PubMed] [Google Scholar]
  9. Morgan M. A., Horstmeier C. D., DeYoung D. R., Roberts G. D. Comparison of a radiometric method (BACTEC) and conventional culture media for recovery of mycobacteria from smear-negative specimens. J Clin Microbiol. 1983 Aug;18(2):384–388. doi: 10.1128/jcm.18.2.384-388.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noordhoek G. T., Kolk A. H., Bjune G., Catty D., Dale J. W., Fine P. E., Godfrey-Faussett P., Cho S. N., Shinnick T., Svenson S. B. Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol. 1994 Feb;32(2):277–284. doi: 10.1128/jcm.32.2.277-284.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pang J., Modlin J., Yolken R. Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Mol Cell Probes. 1992 Jun;6(3):251–256. doi: 10.1016/0890-8508(92)90024-r. [DOI] [PubMed] [Google Scholar]
  12. Pierre C., Lecossier D., Boussougant Y., Bocart D., Joly V., Yeni P., Hance A. J. Use of a reamplification protocol improves sensitivity of detection of Mycobacterium tuberculosis in clinical samples by amplification of DNA. J Clin Microbiol. 1991 Apr;29(4):712–717. doi: 10.1128/jcm.29.4.712-717.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sada E., Ruiz-Palacios G. M., López-Vidal Y., Ponce de León S. Detection of mycobacterial antigens in cerebrospinal fluid of patients with tuberculous meningitis by enzyme-linked immunosorbent assay. Lancet. 1983 Sep 17;2(8351):651–652. doi: 10.1016/s0140-6736(83)92532-1. [DOI] [PubMed] [Google Scholar]
  14. Sanchez-Pescador R., Stempien M. S., Urdea M. S. Rapid chemiluminescent nucleic acid assays for detection of TEM-1 beta-lactamase-mediated penicillin resistance in Neisseria gonorrhoeae and other bacteria. J Clin Microbiol. 1988 Oct;26(10):1934–1938. doi: 10.1128/jcm.26.10.1934-1938.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shawar R. M., el-Zaatari F. A., Nataraj A., Clarridge J. E. Detection of Mycobacterium tuberculosis in clinical samples by two-step polymerase chain reaction and nonisotopic hybridization methods. J Clin Microbiol. 1993 Jan;31(1):61–65. doi: 10.1128/jcm.31.1.61-65.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thierry D., Cave M. D., Eisenach K. D., Crawford J. T., Bates J. H., Gicquel B., Guesdon J. L. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 1990 Jan 11;18(1):188–188. doi: 10.1093/nar/18.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Widjojoatmodjo M. N., Fluit A. C., Torensma R., Verdonk G. P., Verhoef J. The magnetic immuno polymerase chain reaction assay for direct detection of salmonellae in fecal samples. J Clin Microbiol. 1992 Dec;30(12):3195–3199. doi: 10.1128/jcm.30.12.3195-3199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson S. M., Nava E., Morales A., Godfrey-Faussett P., Gillespie S., Andersson N. Simplification of the polymerase chain reaction for detection of Mycobacterium tuberculosis in the tropics. Trans R Soc Trop Med Hyg. 1993 Mar-Apr;87(2):177–180. doi: 10.1016/0035-9203(93)90478-9. [DOI] [PubMed] [Google Scholar]
  19. Yuen K. Y., Chan K. S., Chan C. M., Ho B. S., Dai L. K., Chau P. Y., Ng M. H. Use of PCR in routine diagnosis of treated and untreated pulmonary tuberculosis. J Clin Pathol. 1993 Apr;46(4):318–322. doi: 10.1136/jcp.46.4.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yuen L. K., Ross B. C., Jackson K. M., Dwyer B. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J Clin Microbiol. 1993 Jun;31(6):1615–1618. doi: 10.1128/jcm.31.6.1615-1618.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES