Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 1;89(19):9025–9028. doi: 10.1073/pnas.89.19.9025

Another perspective on the visual motion aftereffect.

E Hiris 1, R Blake 1
PMCID: PMC50057  PMID: 1409598

Abstract

Prolonged adaptation to motion in a given direction produces distinctly different visual motion aftereffects (MAEs) when viewing static vs. dynamic test displays. The dynamic MAE can be exactly simulated by real motion, whereas the static MAE cannot. In addition, the magnitude of the dynamic MAE depends on the bandwidth of motion directions experienced during adaptation, whereas the static MAE does not. Evidently a stationary pattern does not directly activate the neural mechanisms affected during motion adaptation, whereas a dynamic visual display does. These results imply that the traditional explanation of the MAE needs modification.

Full text

PDF
9025

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstis S. M., Moulden B. P. After effect of seen movement: evidence for peripheral and central components. Q J Exp Psychol. 1970 May;22(2):222–229. doi: 10.1080/00335557043000159. [DOI] [PubMed] [Google Scholar]
  2. Derrington A., Suero M. Motion of complex patterns is computed from the perceived motions of their components. Vision Res. 1991;31(1):139–149. doi: 10.1016/0042-6989(91)90081-f. [DOI] [PubMed] [Google Scholar]
  3. Drysdale A. E. The movement after-effect and eye movements. Vision Res. 1975 Oct;15:1171–1171. doi: 10.1016/0042-6989(75)90020-6. [DOI] [PubMed] [Google Scholar]
  4. Frisby J. P., Clatworthy J. L. Evidence for separate movement and form channels in the human visual system. Perception. 1974;3(1):87–96. doi: 10.1068/p030087. [DOI] [PubMed] [Google Scholar]
  5. Hammond P., Mouat G. S., Smith A. T. Motion after-effects in cat striate cortex elicited by moving gratings. Exp Brain Res. 1985;60(2):411–416. doi: 10.1007/BF00235938. [DOI] [PubMed] [Google Scholar]
  6. Livingstone M. S., Hubel D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987 Nov;7(11):3416–3468. doi: 10.1523/JNEUROSCI.07-11-03416.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marlin S. G., Hasan S. J., Cynader M. S. Direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol. 1988 Apr;59(4):1314–1330. doi: 10.1152/jn.1988.59.4.1314. [DOI] [PubMed] [Google Scholar]
  8. Mather G. The movement aftereffect and a distribution-shift model for coding the direction of visual movement. Perception. 1980;9(4):379–392. doi: 10.1068/p090379. [DOI] [PubMed] [Google Scholar]
  9. Nakayama K., Tyler C. W. Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Res. 1981;21(4):427–433. doi: 10.1016/0042-6989(81)90089-4. [DOI] [PubMed] [Google Scholar]
  10. Pantle A. Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzers. Vision Res. 1974 Nov;14(11):1229–1236. doi: 10.1016/0042-6989(74)90221-1. [DOI] [PubMed] [Google Scholar]
  11. Petersen S. E., Baker J. F., Allman J. M. Direction-specific adaptation in area MT of the owl monkey. Brain Res. 1985 Oct 28;346(1):146–150. doi: 10.1016/0006-8993(85)91105-9. [DOI] [PubMed] [Google Scholar]
  12. Schiller P. H., Logothetis N. K. The color-opponent and broad-band channels of the primate visual system. Trends Neurosci. 1990 Oct;13(10):392–398. doi: 10.1016/0166-2236(90)90117-s. [DOI] [PubMed] [Google Scholar]
  13. Tolhurst D. J. Separate channels for the analysis of the shape and the movement of moving visual stimulus. J Physiol. 1973 Jun;231(3):385–402. doi: 10.1113/jphysiol.1973.sp010239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vautin R. G., Berkley M. A. Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. J Neurophysiol. 1977 Sep;40(5):1051–1065. doi: 10.1152/jn.1977.40.5.1051. [DOI] [PubMed] [Google Scholar]
  15. Watamaniuk S. N., Sekuler R., Williams D. W. Direction perception in complex dynamic displays: the integration of direction information. Vision Res. 1989;29(1):47–59. doi: 10.1016/0042-6989(89)90173-9. [DOI] [PubMed] [Google Scholar]
  16. Williams D. W., Sekuler R. Coherent global motion percepts from stochastic local motions. Vision Res. 1984;24(1):55–62. doi: 10.1016/0042-6989(84)90144-5. [DOI] [PubMed] [Google Scholar]
  17. Williams D., Tweten S., Sekuler R. Using metamers to explore motion perception. Vision Res. 1991;31(2):275–286. doi: 10.1016/0042-6989(91)90118-o. [DOI] [PubMed] [Google Scholar]
  18. Wright M. J. Apparent velocity of motion aftereffects in central and peripheral vision. Perception. 1986;15(5):603–612. doi: 10.1068/p150603. [DOI] [PubMed] [Google Scholar]
  19. van Santen J. P., Sperling G. Temporal covariance model of human motion perception. J Opt Soc Am A. 1984 May;1(5):451–473. doi: 10.1364/josaa.1.000451. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES