Skip to main content
BMC Genetics logoLink to BMC Genetics
. 2016 Aug 30;17(1):124. doi: 10.1186/s12863-016-0431-0

Characterization of novel SSR markers in diverse sainfoin (Onobrychis viciifolia) germplasm

Katharina Kempf 1,#, Marina Mora-Ortiz 2,#, Lydia M J Smith 2, Roland Kölliker 1, Leif Skøt 3,
PMCID: PMC5006395  PMID: 27576309

Abstract

Background

Sainfoin is a perennial forage legume with beneficial properties for animal husbandry due to the presence of secondary metabolites. However, worldwide cultivation of sainfoin is marginal due to the lack of varieties with good agronomic performance, adapted to a broad range of environmental conditions. Little is known about the genetics of sainfoin and only few genetic markers are available to assist breeding and genetic investigations. The objective of this study was to develop a set of SSR markers useful for genetic studies in sainfoin and their characterization in diverse germplasm.

Results

A set of 400 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 32 sainfoin individuals, representing distinct varieties or landraces. Alleles were scored for presence or absence and polymorphism information content of each SSR locus was calculated with an adapted formula taking into account the tetraploid character of sainfoin. Relationships among individuals were visualized using cluster and principle components analysis. Of the 400 primer combinations tested, 101 reliably detected polymorphisms among the 32 sainfoin individuals. Among the 1154 alleles amplified 250 private alleles were observed. The number of alleles per locus ranged from 2 to 24 with an average of 11.4 alleles. The average polymorphism information content reached values of 0.14 to 0.36. The clustering of the 32 individuals suggested a separation into two groups depending on the origin of the accessions.

Conclusions

The SSR markers characterized and tested in this study provide a valuable tool to detect polymorphisms in sainfoin for future genetic studies and breeding programs. As a proof of concept, we showed that these markers can be used to separate sainfoin individuals based on their origin.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-016-0431-0) contains supplementary material, which is available to authorized users.

Keywords: Onobrychis viciifolia, Sainfoin, Microsatellite, SSR, Genetic diversity, Molecular markers, Fingerprinting

Background

Onobrychis viciifolia Scop., commonly known as sainfoin, belongs to the tribe Hedysareae and the family Fabaceae. It is a tetraploid (2n = 4x = 28) perennial forage legume, rich in proteins and secondary plant metabolites. Its center of origin is attributed to the Middle East and Central Asia. It was introduced into Europe in the fifteenth century and was rapidly adopted by farmers due to its high fodder value, especially for working horses [1]. Nowadays, sainfoin is cultivated only in small areas for fodder production and on ecological compensation areas. Its cultivation steadily declined since the 1950’s, due to the expanding availability of inorganic fertilizers and the preference for higher yielding legume crops such as alfalfa (Medicago sativa) or red clover (Trifolium pratense) [24]. In the last few years, however, sainfoin has gained renewed interest due to its animal health promoting properties associated with the presence of condensed tannins (CT) and other complex phytochemicals in the foliage. Benefits include anthelminthic properties and prevention of potentially lethal bloat associated with most other forage legumes [59]. In addition, sainfoin shows a range of beneficial agronomic features. In common with most other legumes sainfoin fixes atmospheric nitrogen in its root nodules, thus reducing the need for industrial N fertilizer input. [1, 10]. Furthermore, soil fertility is improved by increased humus development through its deep rooting capability and low input requirements once established [11]. Used as a component of permanent grassland, sainfoin is a valuable alternative for areas suffering from intensification, as it increases soil fertility and has become a popular addition to non-cropped environmental planting; sainfoin provides good resources for native insects and high quality fodder for livestock [11].

Despite its advantages, a wide distribution of sainfoin is hampered by the often poor agronomic performance and the lack of sainfoin varieties adapted to different environmental conditions. The main weaknesses of sainfoin lie in its low tolerance to waterlogging and frost as well as in its poor competitive ability in the early stages of development. Therefore, targeted breeding activities are needed to select for sainfoin individuals better adapted to a broad range of environmental conditions. Breeding activities have also been impaired by the lack of knowledge of the genetic diversity of the species and its mode of inheritance. Further investigation and development of tools for marker assisted breeding has been hampered by the limited availability of species-specific molecular markers. So far, most studies have focused on the use of cross-amplifiable EST-SSRs, mainly from Medicago and Glycine species; ITS markers based on nuclear internal transcribed spacer regions and dominant SRAP markers [1215]. The use of co-dominant SSR markers developed in other species yielded only a low number of alleles per locus in sainfoin (from 5 to 7 in bulks of 10 individual plants [12]. The development of highly informative, specific markers for sainfoin is indispensable to create a genetic knowledge base and assist breeding by marker assisted selection (MAS) [16].

SSRs or Microsatellites [17] are composed of tandemly repeated sections of DNA [18]. SSR markers show co-dominance of alleles and are randomly distributed along the genome, particularly in low-copy regions [19, 20]. Considering the complex tetraploid sainfoin genome and the lack of knowledge about its genetics, SSRs are the markers of choice. SSR are multi-allelic in contrast to next generation high-throughput sequencing (NGS) derived SNP marker which are bi-allelic. This makes SSR markers highly variable and useful for distinguishing even between closely related populations or varieties [21]. Furthermore, SSR are easily detected using standard PCR methods and are transferable to related taxa [22]. The development of NGS has recently enabled the identification of a large set of set of SSR sequences from sainfoin (Mora-Ortiz et al. 2016, BMC Genomics, accepted).

In this study, our aim was to develop and characterize a comprehensive set of markers based on recently identified SSR sequences (Mora-Ortiz et al. 2016, BMC Genomics, accepted) in a panel of 32 sainfoin individuals of different origin.

Methods

Plant material

In order to include a large range of genetic diversity, we selected a set of 32 individual sainfoin plants from 29 different accessions (Table 1), originating from a range of geographical regions and showing differences for tannin content and composition [12, 13, 23, 24]. These accessions were grown in the glasshouse at the National Institute of Agricultural Botany (NIAB) (Cambridge UK) and in the field at Agroscope (Zurich, Switzerland). Young leaf material was collected from each single plant, ground in liquid nitrogen and stored at −80°C until subsequent DNA extraction.

Table 1.

O. viciifolia individuals used for marker characterization in this study

Individual number Variety Status Origin Source
ID_01 247 NA Morocco GRIN
ID_02 Buceanskij NA Romania GRIN
ID_03 CPI 63750 NA Turkey GRIN
ID_04 CPI 63764 wild Turkey GRIN
ID_05 CPI 63820 NA Spain GRIN
ID_06 CPI 63826 NA Spain GRIN
ID_07 NA / RCAT028437 NA Hungary GRIN
ID_08 Ökotyp Wiedlisbach ecotype Switzerland ISS
ID_09 Premier landrace Switzerland ISS
ID_10 Rees A cultivar UK GRIN
ID_11 TU86-43-03 cultivated Turkey GRIN
ID_12 Nova cultivar Canada GRIN
ID_13 Visnovsky cultivar Czech Republik ISS
ID_14 Perly cultivar Switzerland ISS
ID_15 Brunner landrace Austria ISS
ID_16 Perdix cultivar Switzerland ISS
ID_17 Cotswold Common cultivar UK RAU
ID_18 Perly cultivar Switzerland RAU
ID_19 Somborne cultivar UK RAU
ID_20 Ibaneti/ RCAT028292 NA Romania RCAH
ID_21 Bivolari/RCAT028294 cultivar Romania RCAH
ID_22 NA/170582 NA Hungary RCAH
ID_23 CPI 637554/ 192995 NA Turkey GRIN
ID_24 CPI 63767 / 212241 cultivar USA GRIN
ID_25 Na/228352 wild Iran GRIN
ID_26 CPI 63781/ 236486 NA Turkey GRIN
ID_27 Cholderton Hamshire Common cultivar UK GRIN
ID_28 Visnovsky cultivar Czech Republic GRIN
ID_29 Zeus cultivar Italy Cotswold Seeds Ltd
ID_30 Zeus cultivar Italy Cotswold Seeds Ltd
ID_31 Ambra cultivar Italy private
ID_32 Esparcette cultivar UK private

RAU Royal Agricultural University Gloucestershire UK, RCAH Research Centre for Agrobotany Tápiószele; Hungary, GRIN Germplasm Resources Information Network, Washington, USA, ISS Agroscope Institute for sustainability science, Zurich, Switzerland

DNA extraction

DNA was extracted using the Nucleon Phytopure Genomic DNA extraction kit (GE Healthcare, Little Chalfont Buckinghamshire, United Kingdom) following the manufacturer’s instructions. This method has been shown to be suitable for extraction of high quality DNA from O. viciifolia, in which high levels of polyphenol and condensed tannins have been reported to interfere with a successful DNA extraction using other approaches [14]. DNA quality and quantity was assessed using gel electrophoresis and spectrophotometry.

PCR and Gel electrophoresis

A total of 400 SSR primers designed from O. viciifolia transcriptome data (Mora-Ortiz 2016, unpublished), were tested with unlabeled primers for amplification in the 32 plants using an iCyler (Biorad, Hercules, USA) in a volume of 10 μL, with 10 ng DNA, 1 x Go Taqflexi buffer (Promega, Madison, USA), 2.5 mM MgCl2 (Promega), 0.2 mM dNTPs (Promega), 0.2 μM forward primer, 0.2 μM reverse primer and 0.5 U Polymerase G2 (Promega). The conditions followed a touchdown PCR approach with 4 min at 94 °C, 12 cycles of 30 s at 66 °C with −1 °C decrease at each cycle plus 30 s at 72 °C, and 30 cycles of 30 s at 94 °C, 30 s at 54 °C plus 30 s at 72 °C, followed by 7 min at 72 °C. PCR products were separated by gel electrophoresis. Amplicons were separated on 1 % agarose in 1x TBE buffer, stained with ethidium bromide and visualized under UV light.

M13 PCR and capillary electrophoresis

Those 101 primer pairs that successfully amplified fragments in the 32 individuals (Table 2) were further characterized for polymorphisms using the M13 (–21) tail primer genotyping protocol [25]. The PCR reactions were conducted in an iCycler (Biorad) in a sample volume of 10 μL, each containing 20 ng DNA template, 1x Go Taqflexi buffer (Promega), 1.5 mM MgCl2, (Promega), 0.2 mM dNTPs (Promega), 0.16 μM forward primer carrying the M13-tail, 0.04 μM reverse primer and 0.16 μM fluorescently labelled M13-primer, 0.5 U polymerase GoTaq G2 (Promega).

Table 2.

SSR primer sequences used for amplification in 32 O. viciifolia individuals and characteristics of SSR motifs

Marker Motif Repeats Predicted size Forward primer (5′–3′) Reverse primer (5′–3′)
OVK002 AG 9 164 CCCACCAGACAAAAAGAATA GCTTTCCCCTTCATCAACTAT
OVK003 TA 8 122 GATAGAATTCGTTTGTTGGTG ATCTTTGTAACTGTTCGCTCA
OVK017 AC 8 158 GGGTGTTAGTTATCCATTTCC ACATACTAGCCTTCTGGGGTA
OVK027 CTCG 6 129 AATGGAATCTCGGAGACAG GGAAGAAGACGAAGTAGTAGGA
OVK034 GCT 6 150 GTGAGATGAGCTTGGACATT AGATAACTAACTGCAGGCAAG
OVK036 AGGT 6 150 GTGTTAAAGGGGTGAAAACAT CATTTTGACAAACCAGTATCC
OVK038 ATT 6 166 CCACATACGAGACAGAATAGG CTGAAAATTGATCGATACTGG
OVK042 GTT 6 144 GGAACGGTTAATTTCTGATTT AGAATTCCGTACAAGTCGAG
OVK045 AGA 6 148 CCAAAAATCATCAATCAACAC TTGAACAAGGGTTAGGGTTAT
OVK046 AGTG 6 151 TCAACCACATTATAAAACCTCA CGCGAAATCATAGTTCACTT
OVK054 GAA 6 201 TTGCAGAGATAACACTCACCT TCCTGAAAAACCTAATCACAA
OVK055 GAT 6 189 GAAGATATTTCAAAGCAGCAA CATGCTACCACTAGCAGAAGT
OVK063 TTG 6 188 AATTGCAACTGAAACTGAAAC ACTGCTACCCTCTCCATAAAT
OVK068 GGA 6 195 GACCACCCGCAGCTCAAC GTCTTCTTCCCCCATATTTAG
OVK072 ACC 7 199 TTGCCTTAGTCAGTTACCTTG GTGGAGAGAATGAGAGAACCT
OVK073 GAC 6 200 GTAGACAACCGTATCTGGACA AAGATGGAAGGTTCTAGTTCG
OVK077 TTA 6 249 GTCCCTCTCTCTCAAATTGTT AGGTTAATGGAGCTTAGTGGT
OVK089 CAT 6 257 CAAAGTCATACCAATCACCAT TCTTGGAAGCACTTGTTACTC
OVK093 CCA 6 259 CCAAGTGTTTGAAAGTCTCAG TGAGAGTTCGTTCAAGGTAGA
OVK094 TTGCG 5 255 ACCGATCTTAGGATAGATGGA ACTTTTGGTTGCTTAGTCGAT
OVK096 TCA 6 249 GAGCGTTGCATTTACATTTAC CATCCTCCTTTACACCCTAAT
OVK097 GTGA 6 252 TCTATAGAGATGAGGCGACAA CGCCCCTAACTAACCTACTAC
OVK099 TGAG 6 247 AGAAAATGGAAGCAACAGAGT ACAAATAGCAGCTCCCTTC
OVK101 CTAA 6 254 GTTGAGTTTCAGACACAGAGC AATAGCTCCCACAATAACTCC
OVK102 TGT 6 249 CCAAAGGGTGTTTTATTTTCT GGAAGAAATTAAGCAAATGGT
OVK107 AG 8 193 AAGTTAAAACTTTGCGTTGTG GACGTTGTTCTGGATTTCTTC
OVK111 GGT 7 206 TATAGACCTTCTCCTCCCAGA GTGAAAGTCACAAATCCAAAG
OVK119 CAG 6 199 ACCCTCCTTCTCTCCTTATTT GACGAGAGAACTCGTTTATGA
OVK122 TC 9 211 GCAGATAGCACAGTTATCGAC GAACCACACACACAGAATCA
OVK123 ACA 9 200 CACCCATTAACTATCATGGTC CAAGCCCTTTGTGAGATACTA
OVK124 TGA 9 211 GCCTTTTCTGTGACTCGTAA GCTCCATTCCCATTTATAGTT
OVK125 CATTT 5 193 AAATTTAAGCACCGGAATAAC AAAGCAAAAGGGCTACTAAAG
OVK126 TC 8 197 CGACAAAACTATTTAGGCAAA GGGAAGAGATCATAAACCCTA
OVK127 AT 8 200 GCCCAAAATGTATTATCCTTC AGAACAGACAGATATGCAAGC
OVK131 TA 8 200 TCTATCTGGGTGTTGTTTTGT CTGTTTGAATATCGATTACCAC
OVK133 TG 8 196 TGCTTCAGCATTATTGTAACAT TGCACTTCTCCATACTTCCTA
OVK138 CTAA 6 250 TAATATGGTGCAAGTTCCAAT TTCTACGCTTAGCTCAAACC
OVK141 CACG 6 239 GAGGAGGTACATACAGCACAG CAACCTCCTCGTTATCTTTTT
OVK142 GT 8 243 AACATGACTACTGTGAACAAGG CGAACATGTAATTGATCCAAG
OVK155 GTG 6 251 CAGGTTTGAAGTAGCAGAGAA GTAGACCACGCATACTGAATC
OVK158 GACT 6 257 TCAGAGTGTGTTGTGTTGTGT AGTGAAGCAAATGTGTGATTT
OVK159 TG 8 251 CATTATTGCCTAGCATTGTTC ATTTCACCATCAAGTATGCAC
OVK161 TTCC 6 249 AAAGCTTTCTACACGTTGGTA TGGGTTTTTACACTCTGTGAT
OVK165 ACA 6 267 TTTCAAACACTCACTCACTCC TCGGATTTGTGACCTAACTC
OVK168 TGA 6 253 AATTATCACCCACTGCTATGA GGTTTCCATCACTGTTTGTTA
OVK172 AGC 6 256 TTATTAAACCTGCGTCTTCTG GTAGAGCTGTGGGCTTTATCT
OVK173 CT 8 253 TCGTTCTCGTGATTATTCTGT CCTCTATTCAAATAGGGCAAT
OVK174 GGCCC 5 246 ACATGATCGTGAATATGAAGC CAGCAGCAATCAATATATCATC
OVK175 CA 9 250 GTAAAATATCAAGCAGGAGCA AAACTATGCAGACACCCTGTA
OVK177 CTG 7 257 TCTGTTGATTTAAGGAGACGA CTCTTGCTCATATTTTCCTCA
OVK181 AAG 6 257 AGGAAGAAGAAGAAGAAGCAG TTCTCCTTTAACCACAACCTT
OVK183 TGAT 6 256 GAGGGTAAGAGAGAGTGGAAG CTTGCCTGATATCTTCTCAAA
OVK196 AGC 6 286 TTTTGAGAGTGTGGAAGGTTA AGTATGAGCCTGATGATGATG
OVM003 TC 9 297 CCGTCTGTTTAATCATTCACT GAAAGGAAAGGTTATTGGAGA
OVM004 ATTT 5 290 GGGAATTCTTAAATCTCATGG ATGCATGGTACTGGGTCGT
OVM025 CAA 6 297 TTCTGAACAACAACAACAACA GTCCAGGAGCTAAGTAACCAT
OVM031 TGA 6 306 ATTGGTTTCTAAGGAGGACTG GCAATACTCCTCTGCCTAGTT
OVM033 CTC 6 300 CAAGGCTTATTTGGTTAACAG ATACTATTTCCCATGCCTACC
OVM034 TTC 6 308 GCATTTCATCAAACACTTTTC TTGGTTTGAATCTGTGAGACT
OVM035 TTC 7 303 TCATCAAACACTTTTCGTTCT TTGGTTTGAATCTGTGAGACT
OVM038 GAAG 6 297 CACAGGACAAGAGTGAGAGAG TCATGATACCACGAATTTTTC
OVM043 GAG 7 167 TAGTATGGCTGAAATCAAAGG ATATCATAAGGGCAACAGTGA
OVM048 AT 9 157 GACATTGAAATCAAACAATCC AACACTTGTCATGTTTCCAAG
OVM049 TGA 7 150 AACAAACAAGAGGAAAAGGAG TATGTGCTTATCAGGCATTTT
OVM050 ATCC 6 161 ATGAGCATGAAGAGTTTCAGA ACACATCTACGACTTCTTTCG
OVM053 GTGGA 5 149 CACCAAAAGCATAGCAATAGT GCTTGAATTGAATGAGAAATG
OVM057 TTG 6 153 CCTTGAGGAGGAATAATAGGA GACATCATCATCACCTTCACT
OVM058 AT 9 150 GTCAAGTCATACCCATACGAG CAGTGTAACCATATGCACAAA
OVM059 AGA 6 149 ACTCCAACTCCAACTCAGAAC AAGCGAAGAAGAGAGTGAGAT
OVM060 CT 8 159 ATGTAATCAAAAGGTGCAGAA AGCTTCCAAAACAGTGTATGA
OVM061 GTA 6 150 TTAACACACGTACGTACCACA TTTGTCGTTGATCGTTAAGTT
OVM062 AG 8 139 GGAAAAAGGTTTGGATAGATG AAGTTTTCCCCACACTATTCT
OVM064 AT 8 353 GCATGCACAGAATTAAGTTTC AGAAGGTCCTTTGAAAATCAG
OVM065 CT 8 352 AAGACAGCGAGTTACCAATCT GATTGAAACTGAGTAGCGATG
OVM067 CTT 6 352 CAACCTTAATACCAACCTTCC AAAAGTAGCCAGAGAGCAAAT
OVM068 CCT 6 333 CTACAACTCACCGAAACTCAC CGATTTCTGCCTCTTTATTCT
OVM069 AATG 6 357 ATGTTGTACAGATGAGCTTCG TAGTGAGCAAACCTATTTTGG
OVM072 GAA 6 350 TTGATGTGGTTGATCCTATTC GATGTCAACATCTTGGTCATTA
OVM073 ACA 6 346 GTTCTCAAACGCACTATCAAC AAAATCTTGTAGGGATTCGAT
OVM076 AAC 7 348 CCCATTCTTCATCTTTCTCTC TGCTTCCATAATCAGTGAAAT
OVM081 GT 9 350 TCTAGCACAATGTTTTGGATT TATTGAGTTGAAGCAGACCAT
OVM083 CT 8 347 CACACAAACACAAAACTCACA GATCGGAGAAAAGAAGAAGAG
OVM086 GAA 6 350 TCATACAAAGTTCCTTCCGTA ATTGCCAATAACAGTGAAGAG
OVM090 CCA 6 151 AATCAATGGAGGAGGATAAAC GAAGGTTGAAAAGGGAATAAA
OVM091 ATC 6 188 AACCACCCTTAATTCCATAAG AGATAAAAGCCGCAAAAGTAT
OVM092 CAC 6 157 GGACCAACAAAGAGGATTATT CCCTTGCTTGAAGTGTTACTA
OVM094 GTTT 5 163 ATTCATGGGGACAATAAATTC CAAGAGAATGAATGAATCAGC
OVM099 GA 9 149 TATGTATTGCAGAATCACAGC TATTACCCTTTTCCATCTTCC
OVM100 AAG 6 151 GAACTAGATTTGCGGCATT CCCACACCCTTATCCTTATTA
OVM110 AT 8 154 CTGGACGAAAACAACATATTC GTTGGCTTTGGTACTGACATA
OVM116 GAT 7 151 AACTACACGCACGTAATGAAT TGGTTTGATAAACACCTCAAG
OVM120 TTC 6 152 TTCAGTGTCACTTTCCTCATT AGAAGTTGTCATGTCAAGGAA
OVM122 TGG 6 156 ATGAATCTTGTACGGAATCTG GAAGAAAAAGCCATAAACACC
OVM125 AAATT 5 151 ATTCTTTCAACAAGCAAGTGA CTGCAATTCCATCCTATTTTA
OVM126 TCC 6 188 ACTAAGAACCACCCAAAACAT TGAGAAGATGGAGAAGATGTG
OVM128 TGTT 6 155 GAGAAGCATAACCAAAATCCT TGGAAGAAAAGAAACTTCTGA
OVM129 TG 8 133 AATTGGATTCATGTGTTAGGA GAAGTGGAGCCAAAACCT
OVM130 AG 9 154 GCAAATTATCACCATGCAC CGTGAAGAAAATCGGTACTTA
OVM131 AGA 6 153 GAAATAACGCAGGCAGATAC AATTAGAGGCTTCGACTTGTT
OVM132 GAC 6 142 ACGGTAATCAGTAGTGACAGC GTGTGACAGAAAATGGGATTA
OVM133 TTTC 5 171 TAGCATCAAGGTTGGAAATAG CTAGGCTACCTGAATCAAACA

PCR conditions were 2 min at 94 °C, 30 cycles of 30 s at 94 °C, 45 s at 56 °C and 45 s at 72 °C, followed by 8 cycles of 30 s at 94 °C, 45 s at 53 °C and 45 s at 72 °C. The final extension step was conducted at 72 °C for 10 min. An aliquot of 1μl of the PCR product was diluted in 10 μl HiDi™ formamide (Applied Biosystems®, Thermo Fisher Scientific, Waltham, MA, USA) and 0.2 μl Rox 500™ oligonucleotide ‘size ladder’(Applied Biosystems®) for capillary electrophoresis on the Genetic Analyzer 3730 (Life Technologies, Carlsbad, CA). Alleles were scored using the GeneMarker software (Softgenetics, V2.4.0 Inc., State College, USA).

Data analysis

All statistical analyses and calculations were performed using R statistical software (R Core Team, 2014). The polymorphism information content (PIC) of SSR markers was calculated as the mean of the PIC of each allele, using the formula for dominant markers from Roldan-Ruiz et al. [26] as;

PICi=2fi1fi,

where PICi is the polymorphism information content of allele i and fi is the frequency of occurrence of allele i (fragment present) in the 32 individuals. From single alleles, average (PICAv), minimum (PICMin) and maximum (PICMax) PIC values were calculated for each SSR marker.

In order to calculate genetic distance measures, SSR alleles were coded as individual markers with 1 for presence and 0 for absence of the allele as binary data. Pairwise genetic distances between individuals were calculated as modified Rogers’ distance Dw, [27] which shows the extent of genetic diversity between two individuals [28] ranging from 0 (no diversity between individuals) and 1 (maximum diversity).

Genetic relationships were visualised using cluster analysis and the R-function pvclust() [29] based on Euclidean distance that was rescaled to Dw for plotting purposes (Dw and Euclidean distance show a linear relationship, Additional file 1: Figure S1). Probability values (p-values) were calculated for each cluster using multiscale bootstrap resampling [30, 31] to calculate approximately unbiased (AU) p-values [32]. The k-means clustering algorithm [33] was applied to the Dw values using a sequence of k = 2 clusters to 32 clusters. The Calinsky criterion [34] was then calculated for each number of k as implemented in the R function cascadeKM() and the optimum number of clusters was determined at the maximal value. Population structure was further investigated by principal component analysis performed on binary raw data of individual alleles.

Results

SSR analysis

SSR markers showed a high degree of polymorphism and overall, 1154 alleles were found with an average of 11.4 alleles per marker locus (Table 3). Among those 1154 alleles, only five alleles (from SSR OVK042, OVK172, OVM031, OVM072 and OVM100) were non-polymorphic and hence present in all individuals studied.

Table 3.

Characterization of the 101 polymorphic sainfoin markers

Marker PIC Av PIC Min PIC Max NoA NoA Priv MinAF MaxAF Size
OVK002 0.22 0.06 0.47 9 3 0.03 0.63 154–175
OVK003 0.23 0.06 0.47 11 2 0.03 0.38 92–124
OVK017 0.22 0.06 0.50 19 5 0.03 0.47 148–184
OVK027 0.28 0.06 0.50 9 2 0.03 0.59 120–140
OVK034 0.27 0.06 0.49 12 1 0.03 0.56 138–154
OVK036 0.35 0.17 0.50 7 0 0.09 0.69 133–154
OVK038 0.19 0.06 0.40 14 4 0.03 0.28 155–186
OVK042 0.25 0.00 0.50 2 0 0.50 1.00 183–186
OVK045 0.29 0.12 0.43 6 0 0.09 0.94 138–148
OVK046 0.31 0.06 0.49 12 1 0.03 0.56 138–157
OVK054 0.29 0.12 0.49 15 0 0.06 0.44 274–290
OVK055 0.20 0.06 0.38 8 2 0.03 0.84 135–159
OVK063 0.24 0.06 0.50 13 2 0.03 0.72 179–200
OVK068 0.25 0.06 0.43 9 3 0.03 0.31 186–213
OVK072 0.32 0.12 0.50 4 0 0.06 0.81 193–198
OVK073 0.29 0.06 0.50 11 1 0.03 0.53 186–210
OVK077 0.23 0.06 0.45 9 2 0.03 0.78 233–264
OVK089 0.27 0.06 0.49 9 2 0.03 0.44 279–299
OVK093 0.23 0.06 0.50 14 6 0.03 0.56 234–271
OVK094 0.24 0.06 0.48 14 4 0.03 0.66 208–244
OVK096 0.21 0.06 0.48 20 6 0.03 0.41 215–294
OVK097 0.22 0.06 0.38 3 0 0.13 0.97 240–248
OVK099 0.25 0.06 0.49 13 2 0.03 0.75 232–270
OVK101 0.36 0.06 0.50 7 1 0.03 0.72 339–352
OVK102 0.23 0.06 0.34 4 1 0.03 0.22 239–251
OVK107 0.29 0.06 0.45 15 1 0.03 0.72 206–234
OVK111 0.26 0.06 0.48 7 2 0.03 0.75 213–232
OVK119 0.30 0.06 0.47 10 1 0.03 0.72 216–252
OVK122 0.24 0.06 0.45 8 1 0.03 0.66 330–341
OVK123 0.26 0.06 0.50 10 3 0.03 0.75 208–237
OVK124 0.26 0.06 0.49 15 1 0.03 0.44 218–267
OVK125 0.29 0.06 0.50 9 1 0.03 0.72 197–222
OVK126 0.25 0.06 0.49 15 3 0.03 0.56 198–233
OVK127 0.28 0.06 0.49 6 1 0.03 0.44 204–222
OVK131 0.17 0.06 0.48 15 3 0.03 0.59 183–228
OVK133 0.25 0.06 0.50 13 3 0.03 0.63 205–239
OVK138 0.21 0.06 0.49 13 6 0.03 0.56 232–267
OVK141 0.14 0.06 0.47 15 7 0.03 0.38 242–269
OVK142 0.25 0.06 0.50 12 3 0.03 0.47 256–285
OVK155 0.24 0.06 0.49 14 3 0.03 0.56 234–282
OVK158 0.19 0.06 0.40 24 6 0.03 0.28 273–375
OVK159 0.23 0.06 0.50 14 4 0.03 0.81 268–290
OVK161 0.25 0.06 0.40 12 1 0.03 0.28 220–276
OVK165 0.19 0.06 0.50 20 6 0.03 0.50 273–311
OVK168 0.24 0.06 0.50 11 3 0.03 0.81 258–284
OVK172 0.16 0.00 0.30 5 0 0.06 1.00 268–279
OVK173 0.23 0.06 0.48 18 5 0.03 0.59 268–316
OVK174 0.23 0.06 0.48 5 2 0.03 0.75 245–266
OVK175 0.19 0.06 0.38 10 2 0.03 0.88 252–267
OVK177 0.27 0.06 0.49 7 2 0.03 0.59 267–286
OVK181 0.19 0.06 0.38 19 4 0.03 0.25 343–381
OVK183 0.24 0.06 0.49 17 1 0.03 0.44 266–289
OVK196 0.21 0.06 0.50 8 2 0.03 0.53 297–314
OVM003 0.31 0.12 0.47 10 0 0.06 0.69 299–321
OVM004 0.21 0.06 0.45 18 6 0.03 0.34 380–426
OVM025 0.33 0.17 0.49 7 0 0.09 0.84 306–324
OVM031 0.26 0.00 0.50 13 1 0.03 1.00 292–353
OVM033 0.29 0.06 0.50 8 1 0.03 0.69 308–330
OVM034 0.22 0.06 0.50 17 5 0.03 0.53 307–355
OVM035 0.22 0.06 0.50 17 5 0.03 0.53 301–350
OVM038 0.19 0.06 0.43 14 4 0.03 0.31 311–351
OVM043 0.30 0.06 0.49 10 2 0.03 0.66 173–203
OVM048 0.29 0.12 0.43 6 0 0.06 0.72 174–186
OVM049 0.31 0.06 0.50 9 1 0.03 0.50 162–198
OVM050 0.20 0.06 0.49 13 6 0.03 0.72 168–198
OVM053 0.32 0.06 0.50 11 1 0.03 0.50 134–182
OVM057 0.35 0.17 0.49 5 0 0.09 0.66 165–180
OVM058 0.23 0.06 0.49 15 3 0.03 0.44 135–178
OVM059 0.24 0.06 0.48 7 2 0.03 0.59 156–174
OVM060 0.23 0.06 0.50 21 4 0.03 0.50 172–219
OVM061 0.19 0.06 0.50 10 4 0.03 0.84 143–175
OVM062 0.30 0.06 0.49 12 2 0.03 0.59 151–170
OVM064 0.16 0.06 0.47 16 8 0.03 0.38 380–444
OVM065 0.25 0.06 0.49 14 4 0.03 0.69 360–391
OVM067 0.33 0.17 0.49 6 0 0.09 0.66 366–380
OVM068 0.26 0.12 0.43 8 0 0.06 0.88 343–368
OVM069 0.26 0.06 0.48 13 2 0.03 0.59 454–479
OVM072 0.28 0.00 0.50 7 1 0.03 1.00 365–387
OVM073 0.20 0.06 0.45 21 5 0.03 0.34 446–511
OVM076 0.22 0.06 0.48 17 3 0.03 0.41 347–376
OVM081 0.18 0.06 0.40 17 5 0.03 0.28 353–396
OVM083 0.30 0.06 0.50 11 2 0.03 0.63 365–384
OVM086 0.32 0.06 0.50 10 1 0.03 0.63 371–391
OVM090 0.30 0.06 0.49 8 2 0.03 0.84 158–180
OVM091 0.34 0.06 0.50 8 1 0.03 0.47 184–217
OVM092 0.23 0.06 0.43 7 2 0.03 0.81 163–185
OVM094 0.33 0.12 0.50 7 0 0.06 0.81 190–207
OVM099 0.18 0.06 0.50 11 5 0.03 0.50 165–198
OVM100 0.24 0.00 0.48 5 0 0.09 1.00 163–179
OVM110 0.21 0.06 0.49 18 5 0.03 0.44 163–185
OVM116 0.28 0.06 0.49 15 2 0.03 0.56 138–204
OVM120 0.34 0.06 0.50 6 1 0.03 0.88 169–187
OVM122 0.31 0.06 0.50 4 1 0.03 0.91 164–180
OVM125 0.26 0.06 0.50 10 3 0.03 0.47 161–180
OVM126 0.22 0.06 0.50 18 4 0.03 0.53 191–229
OVM128 0.26 0.06 0.47 9 1 0.03 0.81 173–190
OVM129 0.25 0.06 0.49 14 4 0.03 0.56 146–173
OVM130 0.20 0.06 0.47 20 7 0.03 0.38 152–187
OVM131 0.34 0.06 0.50 8 2 0.03 0.56 159–198
OVM132 0.30 0.06 0.47 8 2 0.03 0.78 157–176
OVM133 0.20 0.06 0.47 14 3 0.03 0.63 177–212

PICAv, PICMin and PICMax give the average, minimum and maximum allele-wise polymorphism information content values, NoATot the total number of alleles, NoAPriv the number of private alleles, MinAF the minimum allele frequency and MaxAF the maximum allele frequency value

With only two alleles in the 32 individuals, SSR OVK042 had the lowest number of alleles, whereas OVK158 had the highest number with 24 amplified alleles. The minimum rate of allele occurrence was 0.03125, corresponding to occurrence in only one genotype (i.e. a private allele of an individual genotype). In total, 250 private alleles were detected and these were equally distributed across the examined set of individuals and markers. With regard to individuals, the highest number of private alleles over all markers was found for individual ID_08 (14 private alleles) and the lowest number was found for ID_17 (3 private alleles). The origin of the individual did not appear to affect the occurrence of private alleles. With regard to markers, the most private alleles were observed in OVM064 (8 private alleles), whereas 16 markers (15.8 %) had no private alleles at all.

The average polymorphism information content (PICAv) ranged from 0.14 (OVK141) to 0.36 (OVK101) (Table 3). A detailed look at the PIC values of individual alleles in the different markers exhibited minimum PIC values per SSR (PICMin) between 0 (Additional file 2: Figure S2), OVK042, OVK172, OVM031, OVM072, OVM100) and 0.17 (OVK131) and maximum PIC values per SSR (PICMax) between 0.3 (OVK 172) and 0.5 (16 different markers).

The overall length of SSR fragments detected ranged from 91 to 511base pairs (bp). Markers with two base pair motifs had a slightly higher number of repeats (eight to nine) when compared to markers with three to five bp motifs (five to seven repetitions). The total fragment length observed did not differ between motif lengths (data not shown). Contrastingly, the number of alleles found for SSRs with two bp motifs was higher (13.5 alleles on average), compared to SSRs with longer motifs (10.7 alleles). The average number of alleles per sainfoin genotype was 230.1 over all SSR markers, leading to an average of 2.3 alleles per SSR marker and genotype. The lowest number of alleles was found for genotype ID_25 with 191 alleles, the highest for ID_07 with 268 alleles. Assigning all individuals to cultivars and non-cultivars (ecotypes, landraces and NA) resulted in 981 alleles for individuals from cultivars (57.7 alleles per individual) and 942 alleles for non-cultivars (62.8 alleles per individual).

Diversity of O. viciifolia individuals

The allocation of individuals to groups by overall similarity of alleles was assessed using k-means partition comparisons. Those k-means statistic (Fig. 1, left) simulate a grouping of individuals (assigned by different colors) dependent on number of groups chosen. Individuals were assigned into two to ten groups, with a more homogenous grouping for two and three groups. The Calinski criterion (Fig. 1, right), giving the most likely grouping by the highest value reached, indicating a grouping of individuals into two groups by a value >3.

Fig. 1.

Fig. 1

Group separation of individuals as assessed by k-means partitioning for k = 2 to 10 with colors indicating different groups (left). The optimum number of groups (k) according to maximum Calinski criterion was determined to be two (right)

The cluster dendrogram based on the modified Roger’s distance (Fig. 2) also displayed a partitioning of individuals in two main groups, which were separated by a modified Roger’s distance value of 0.47. Individuals belonging to the same variety located in the same main branch for the varieties Perly (ID_14, ID_18; 0.4), Visnovsky (ID_13, ID_28; 0.39) and Zeus (ID_29, ID_30; 0.48). The variety Perdix is an advanced variety originating from the variety Perly and the Perdix genotype (ID_16) clusters closely to one of the Perly individuals (ID_14).

Fig. 2.

Fig. 2

Cluster Dendrogram of individuals based on the modified Rogers’ distance. Values at branches are AU p-values (blue). Different colours of genotype labels give the affiliation to the two groups determined by k-means partitioning

The first, smaller branch of the cluster (Fig. 2, right hand side) consisted mainly of individuals originating from Switzerland and the United Kingdom (cluster 1), whereas the majority of the second, larger branch was comprised of individuals from Southern and Eastern Europe as well as individuals from USA, Morocco and Canada (cluster 2). However, AU values showed no significance (values <95) for most branches. Principal component analysis (PCA; Fig. 3) showed a pattern comparable to that observed from cluster analysis with individuals of the two main clusters mainly being separated by the first principle component which explained 10.3 % of the total marker variation. The second principle component accounted for 4.9 % of the variation, most of which was intragroup. The occurrence of alleles across all markers varied between the two clusters with 849 alleles amplified in cluster 1 (65.3 per individual) and 979 alleles in cluster 2 (51.5 per individual).

Fig. 3.

Fig. 3

Principle component analysis of 32 sainfoin (O. viciifolia) individuals based on 1054 alleles of 101 SSR markers. Different colors give the affiliation to the two groups as determined by k-means partitioning

Discussion

The 101 SSR markers newly developed from sainfoin revealed a high degree of polymorphism. In addition to differences in multiples of the repeat motif, we also found alleles differing by fractions of the multiple motif length. Such variations could have arisen from insertions, deletions and translocations in the flanking region of the SSR [35]. Such mutations in the flanking region might also contribute to the high degree of polymorphism in our marker data set. The SSR sizes predicted through sequencing and the actual size distribution observed in the 32 individuals was consistent for most of the markers. Discrepancies can largely be explained by the fact that SSR motifs were developed from individuals not represented in the present study. In total, we found 1154 alleles at 101 loci resulting in 11.4 amplified alleles per SSR on average. This is twice the amount found by Demdoum [12], who found 5.83 alleles by transferring markers from barrel clover (Medicago truncatula Gaertn.) and soybean (Glycine max L.) to sainfoin. Fragments were smaller for the specific marker set in this study (92 to 511 bp) compared to markers adopted from other species [12] (79 to 865 bp). The larger sizes of alleles from cross-species amplification could be attributed to interspecific differences to the donor species due to repeat length variation within the SSR region and indels in the flanking region [36]. Avci [37] amplified 725 alleles from 18 SSR markers in diverse Onobrychis spp. using markers from pea and barrel clover. The higher number found by these authors could be explained by the larger diversity of germplasm used, which originated from different subspecies.

SSR marker studies with other tetraploid species using diverse panels of individuals showed lower numbers of alleles per marker compared to the present study, e.g. 7.2 alleles in sugar cane (Saccharum officinarum) [38], 6.7 alleles in switchgrass (Panicum virgatum) [39] and 6 alleles in peanut (Arachis hypogaea) [40].

A few markers were observed with less than five alleles among the 32 individuals. These may still be useful in future studies, since this study represents an initial screening of single individuals and not an extensive population survey. Additionally, using only the most polymorphic markers would bias the overall genetic diversity e.g. in conservation studies [41].

The challenge in analyzing SSR alleles in tetraploids lies in determining the dosage of each allele, which is often impossible using capillary electrophoresis for individuals carrying less than four different alleles at a specific marker locus. The PIC content gives an estimation of the information content of a marker and is traditionally calculated by the formula of Botstein [42]. This was developed for diploid species, for which the allele frequency is either known or can be inferred from the allele occurrence (presence/absence). For tetraploid species, the allele frequency is difficult to derive from the allele occurrence due to different allele doses (1 to 4 alleles). Hence, the formula for diploids could not be used for tetraploid sainfoin. Thus, the PIC was calculated separately for each allele, on the basis of allele occurrence counts, using a formula adopted from Roldan-Ruiz [26] and averaging the PIC across all loci of one locus [43]. Here, the maximum value that can be reached is 0.5, which corresponds to alleles found in 50 % of the population. Small values, on the other hand, correspond to very abundant or to very rare alleles. Deciding whether a SSR marker is useful also depends upon the scientific issue. Taking into account different allele-based PIC values of an SSR locus (Additional file 2: Figure S2), therefore, gives the most holistic picture of the SSR marker. High PIC values of alleles (0.5–0.4) are useful for inside population studies e.g. to trace marker trait associations, whereas low PIC values (0.0–0.1) of single alleles could be more useful for studies of evolution or genetic drift [44]. The average PIC values in this study indicated that most markers had alleles which could be found in a group of individuals and are suitable for several approaches in future studies. These PIC values were comparable to those found by Tehrani [43] which were between 0.16 and 0.44 in Lolium persicum Boiss. The large number of private alleles is a clear indication of genetic distinctness of the individuals, which was anticipated in view of their diverse origins.

Genetic diversity is a prerequisite for selection in variety development. So far, there is limited information on the genetic diversity of sainfoin available. Use of AFLP and SSR markers from other species were not able to reveal genetic diversity in distinct Spanish sainfoin accessions [12, 45]. The values of that study, given by Nei’s similarity values, which represent the proportion of shared fragments on the basis of binary data and corrected by the marker number [46], reached values of 0.73 to 0.8 [12, 45]. A conversion of those values to genetic distance values by the formula –ln (Nei’s similarity values) resulted in Nei’s genetic distance values of 0.31 and 0.22 [47]. In a study of sainfoin genetic diversity using RAPD markers in ten landraces from East Azerbaijan and in 36 Iranian sainfoin populations, Nei’s genetic distance values of 0.32 and 0.25, respectively, were observed [48, 49]. In our study, highest modified Roger’s distance of 0.48 corresponds to alleles not shared between our two cluster groups, which is almost 50 % (Fig. 2). The smallest Roger’s distance values with 0.35, corresponds to an approximate Nei’s distance value of 0.43 (Additional file 1: Figure S1), which is higher than the low values observed in other studies [12, 45, 48]. The majority of among-genotype comparisons showed higher values. The higher values of genetic diversity found in the present study may reflect the high variability of the markers developed and the selection of 32 individuals of contrasting origin. Despite the fact that individuals of the same cultivars in this predominantly outbreeding species can show considerable variability [50], the individuals from the same cultivar grouped clearly together in the present study (Figs. 2 and 3, Table 1).

The 32 individuals investigated separated into two clear groups based on different multivariate analyses. The first main group was comprised mainly of individuals from Switzerland and the United Kingdom, whereas the second group contained individuals originating from South and East Europe as well as USA, Canada and Morocco. In some instances, individuals originating from the same geographical region did not cluster tightly together, some even into the two different cluster groups. The three plants from Italy, ID_29 and ID_30, both cultivar “Zeus”, clustered in group 2, whereas ID_31 of the cultivar “Ambra” clustered to group 1). Especially for cultivars, this is likely to be due to different origin of base material (which is often unknown), as well as divergent breeding and selection history.

A similar grouping of accessions identified by the present cluster analysis could be found in earlier studies between sainfoin accessions from Western Europe and those from Eastern Europe and Asia [12, 23]. This clear genetic distinction between the individuals from Western Europe and those from Eastern Europe and beyond could reflect adaptation to diverse climatic conditions either naturally or as a result of local selection by growers [44]. Under genetic isolation and limited gene exchange, differentiation in the sainfoin germplasm with accompanied morphological separation seems likely [51]. The average number of alleles amplified in individuals of the West European cluster was 65.3, which was approximately 14 alleles more than individuals from the other cluster (51.5). These results might indicate a higher allelic diversity in individuals from mainly Switzerland and Great Britain compared to other origins. Deducing differences in tannin content and composition between single individuals of the two clusters based on earlier studies dealing with samples of plants from the same accessions is extremely difficult because the variation found within accessions is at least as large as variation between accessions [24].

Conclusions

This study reports the first characterization of specific co-dominant SSR markers for sainfoin. The 101 SSR markers characterized in this study showed a high degree of polymorphism and clearly demonstrated the differences between sainfoin individuals, with diverse origin, on a molecular genetic level. The genetic differences found in our panel separated the individuals into two groups, with a clear correlation to the geographical origin of those individuals. SSR markers, such as those characterized here, will be very useful in future genetic analyses, such as paternity or pedigree analysis in breeding programs, as well as more detailed analysis of genetic diversity in this forage crop. Furthermore, the development of new varieties could be crucially improved by choosing distinct genepools and minimising inbreeding depression.

Acknowledgements

We wish to thank the European Commission for funding this research (Marie Curie Initial Training Network, ‘LegumePlus’, PITN-GA-2011-289377). The authors are grateful to Rhys Kelly and Kirsten Skøt (IBERS) and Tom Wood (NIAB) for help with the SSR analysis.

Funding

This research was funded by the European Commission through a Marie Curie Initial Training Network, ‘LegumePlus’, PITN-GA-2011-289377.

Availability of data and materials

The list of primers and accessions used are provided in the paper. The full list of all putative SSR loci and the sainfoin transcriptome sequence is provided in a manuscript currently under review, and is also available from the corresponding author.

Authors’ contributions

KK and MMO contributed to the experimental design, performed all analyses and led the writing of the manuscript. LMJS assisted in data collection, variety choice, structuring the work programme and helped to draft the manuscript. RK and LS conceived the study and assisted with data collection, data analysis and drafting the manuscript. All authors read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

No ethics approval were needed for this work.

Abbreviations

AFLP

Amplified fragment length polymorphism

EST-SSR

Expressed sequence tag – short sequence repeats

ITS

Internal transcribed spacer

RAPD

Random amplified polymorphic DNA

SNP

Single nucleotide polymorphism

SRAP

Sequence related amplified polymorphism

SSR

Short sequence repeats

Additional files

Additional file 1: Figure S1. (319.2KB, pdf)

Relationship between modified Roger’s Distance to Euclidian Distance and to Nei’s Distance. (PDF 319 kb)

Additional file 2: Figure S2. (431.7KB, pdf)

Polymorphism Information Content (PIC) values for individual alleles at SSR loci. Different grey levels are used for better visual differentiation among alleles of the different SSR markers. (PDF 431 kb)

Contributor Information

Katharina Kempf, Phone: +41 58 468 71 23, Email: katharina.kempf@agroscope.admin.ch.

Marina Mora-Ortiz, Phone: +44 (0)1223 342200, Email: m.moraortiz@reading.ac.uk.

Lydia M. J. Smith, Phone: +44 (0)1223 342200, Email: lydia.smith@niab.com

Roland Kölliker, Phone: +41 58 468 71 23, Email: roland.koelliker@agroscope.admin.ch.

Leif Skøt, Phone: +44(0)1970 823133, Email: lfs@aber.ac.uk.

References

  • 1.Koivisto JM, Lane GPF. Sainfoin - worth another look. In: College RA, editor. Sainfoin: worth another look. Royal Agricultural College, Cirencester, on behalf of the BGS Forage Legumes Special Interest Group, UK. Cirencester; 2001.
  • 2.Burton JC, Curley RL. Nodulation and nitrogen fixation in sainfoin (Onobrychis sativa, Lam.) as influenced by strains of rhizobia. Mont AES Bull. 1970;627:3–5. [Google Scholar]
  • 3.Frame J, Charlton JFL, Laidlaw AS. Sainfoin. In: International C, editor. Temperate forage legumes. Wallingford: CAB International; 1998. pp. 279–289. [Google Scholar]
  • 4.Sheehy JE, Popple SC. Photoynthesis, water relations, temperature and canopy structure as factors influencing the growth of sainfoin (Onobrychis viciifolia Scop.) and lucerne (Medicago sativa L.) Ann Bot. 1981;48:113–128. [Google Scholar]
  • 5.Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006;22:253–261. doi: 10.1016/j.pt.2006.04.004. [DOI] [PubMed] [Google Scholar]
  • 6.Min BR, Barry TN, Attwood GT, McNabb WC. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol. 2003;106:3–19. doi: 10.1016/S0377-8401(03)00041-5. [DOI] [Google Scholar]
  • 7.Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric. 2006;86:2010–2037. doi: 10.1002/jsfa.2577. [DOI] [Google Scholar]
  • 8.Marais JPJ, Mueller-Harvey I, Brandt EV, Ferreira D. Polyphenols, condensed tannins, and other natural products in Onobrychis viciifolia (sainfoin) J Agric Food Chem. 2000;48:3440–3447. doi: 10.1021/jf000388h. [DOI] [PubMed] [Google Scholar]
  • 9.Ramirez-Restrepo CA, Barry TN. Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim Feed Sci Technol. 2005;120:179–201. doi: 10.1016/j.anifeedsci.2005.01.015. [DOI] [Google Scholar]
  • 10.Goplen BP, Richards KW, Moyer JR. Sainfoin for western Canada. Agriculture Canada Publication. 1991;1470E:24. [Google Scholar]
  • 11.Zhang T, Wang Y, Wang Q, Wang X, Han J. Organic carbon and nitrogen stocks in reed meadow soils converted to alfalfa fields. Soil Till Res. 2009;105:143-8.
  • 12.Demdoum S, Munoz F, Delgado I, Valderrabano J, Wuensch A. EST-SSR cross-amplification and genetic similarity in Onobrychis genus. Genet Resour Crop Evol. 2012;59:253–260. doi: 10.1007/s10722-011-9681-x. [DOI] [Google Scholar]
  • 13.Lewke Bandara N, Papini A, Mosti S, Brown T, Smith LMJ. A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae) Turk J Bot. 2013;37:981–992. doi: 10.3906/bot-1210-32. [DOI] [Google Scholar]
  • 14.Hayot-Carbonero C. PhD Thesis. Manchester: University of Manchester; 2011. Sainfoin (Onobrychis viciifolia), a forage legume with great potential for sustainable agriculture, an insight on its morphological, agronomical, cytological and genetic characterisation. [Google Scholar]
  • 15.Kempf K, Grieder G, Walter A, Widmer F, Reinhard S, Koelliker R. Evidence and consequences of selffertilisation in the predominantly outbreeding forage legume Onobrychis viciifolia. BMC Genet. 2015;16:1–12. doi: 10.1186/s12863-015-0275-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Sorrells ME, Wilson WA. Direct classification and selection of superior alleles for crop improvement. Crop Sci. 1997;37:691–697. doi: 10.2135/cropsci1997.0011183X003700030001x. [DOI] [Google Scholar]
  • 17.Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989;44:397–401. [PMC free article] [PubMed] [Google Scholar]
  • 18.Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1996;1:215–222. doi: 10.1016/S1360-1385(96)86898-0. [DOI] [Google Scholar]
  • 19.Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK. Potential of Molecular Markers in Plant Biotechnology. Plant Omics. 2009;2:141–162. [Google Scholar]
  • 20.Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet. 2002;30:194–200. doi: 10.1038/ng822. [DOI] [PubMed] [Google Scholar]
  • 21.Smith DN, Devey ME. Occurrence and inheritance of microsatellites in Pinus radiata. Genome. 1994;37:977–983. doi: 10.1139/g94-138. [DOI] [PubMed] [Google Scholar]
  • 22.Chen H, Liu L, Wang L, Wang S, Somta P, Cheng X. Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna angularis) PLoS One. 2015;10:e0131939. doi: 10.1371/journal.pone.0131939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hayot-Carbonero CH, Carbonero F, Smith LMJ, Brown TA. Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop. Genet Resour Crop Evol. 2012;59:1777–1788. doi: 10.1007/s10722-012-9800-3. [DOI] [Google Scholar]
  • 24.Malisch CS, Luescher A, Baert N, Engstrom MT, Studer B, Fryganas C, Suter D, Mueller-Harvey I, Salminen J-P. Large Variability of Proanthocyanidin Content and Composition in Sainfoin (Onobrychis viciifolia) J Agric Food Chem. 2015;63:10234–10242. doi: 10.1021/acs.jafc.5b04946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000;18:233–234. doi: 10.1038/72708. [DOI] [PubMed] [Google Scholar]
  • 26.Roldan-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.) Mol Breed. 2000;6:125–134. doi: 10.1023/A:1009680614564. [DOI] [Google Scholar]
  • 27.Wright S. Variability within and among natural populations. Chicago: The University of Chicago Press; 1978. [Google Scholar]
  • 28.Lee M, Godshalk EB, Lamkey KR, Woodman WW. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci. 1989;29:1067–1071. doi: 10.2135/cropsci1989.0011183X002900040050x. [DOI] [Google Scholar]
  • 29.Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–1542. doi: 10.1093/bioinformatics/btl117. [DOI] [PubMed] [Google Scholar]
  • 30.Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. [DOI] [PubMed] [Google Scholar]
  • 31.Shimodaira H. Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann Stat. 2004;32:2616–2641. doi: 10.1214/009053604000000823. [DOI] [Google Scholar]
  • 32.Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979;7:1–26. doi: 10.1214/aos/1176344552. [DOI] [Google Scholar]
  • 33.MacQueen J. Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press; 1967. Some methods for classification and analysis of multivariate observations. [Google Scholar]
  • 34.Calinski T, Harabasz J. A dendrite method for cluster analysis. Comm Stat. 1974;3:1–27. doi: 10.1080/03610928308827180. [DOI] [Google Scholar]
  • 35.Robinson JD, Hall DW, Wares JP. Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation. Mol Ecol. 2013;22:2627–2639. doi: 10.1111/mec.12283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol. 1998;15:1275–1287. doi: 10.1093/oxfordjournals.molbev.a025856. [DOI] [PubMed] [Google Scholar]
  • 37.Avci S, Ilhan E, Erayman M, Sancak C. Analysis of Onobrychis genetic diversity using SSR markers from related legume species. J Anim Plant Sci. 2014;24:556–566. [Google Scholar]
  • 38.Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, de Souza AP. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding. 2006;125:378–384. doi: 10.1111/j.1439-0523.2006.01227.x. [DOI] [Google Scholar]
  • 39.Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH. Genetic Diversity in Switchgrass Collections Assessed by EST-SSR Markers. Bioenerg Res. 2008;1:136–146. doi: 10.1007/s12155-008-9011-0. [DOI] [Google Scholar]
  • 40.Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 1999;39:1243–1247. doi: 10.2135/cropsci1999.0011183X003900040047x. [DOI] [Google Scholar]
  • 41.Vali U, Einarsson A, Waits L, Ellegren H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol. 2008;17:3808–3817. doi: 10.1111/j.1365-294X.2008.03876.x. [DOI] [PubMed] [Google Scholar]
  • 42.Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–331. [PMC free article] [PubMed] [Google Scholar]
  • 43.Tehrani MS, Mardi M, Saeidi H, Gharehyazi B, Assadi M. Transferability of genomic and EST-microsatellites from Festuca arundinacea Schreb. to Lolium persicum Boiss. and Hohen. ex Boiss. Int J Bot. 2008;4:476–480. doi: 10.3923/ijb.2008.476.480. [DOI] [Google Scholar]
  • 44.Silvertown JW, Doust JL. Introduction to plant population biology. 3. Oxford: Blackwell Scientific Publications LTD; 1993. [Google Scholar]
  • 45.Sardaro S, Molinari L, Albertini E, Reosellini D, Negri V, Falcinelli M. Distinguibilità molecolare di poplazioni spontanee di Poa pratensis, Lolium perenne e Onobrychis viciifolia. Sementi Elette. 2003;6:47–49. [Google Scholar]
  • 46.Lamboy WF. Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Meth Appl. 1994;4:31–37. doi: 10.1101/gr.4.1.31. [DOI] [PubMed] [Google Scholar]
  • 47.Frankham R, Ballou J, Briscoe DA. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2010. [Google Scholar]
  • 48.Hejrankesh N, Mousavizadeh SA, Haghighi AR, Rashidi V. Evaluation of genetic diversity of sainfoin (Onobrychis viciifolia Scop.) landraces using RAPD markers. J Curr Res Sci. 2014;2:739–748. [Google Scholar]
  • 49.Rasouli M, Jafari AA, Tabaei-Aghdaei SR, Shanjani PS, Darvish F. Assessment of genetic variability of 36 populations of sainfoin (Onobrychis sativa) based on RAPD markers. Int J Biosci. 2013;3:15–26. [Google Scholar]
  • 50.Posselt UK. Breeding Methods in Cross-Pollinated Species. In: Boller B, Posselt UK, Veronesi F, editors. Fodder Crops and Amenity Grasses. New York: Springer; 2010. [Google Scholar]
  • 51.Zarrabian M, Majidi MM, Ehtemam MH. Genetic Diversity in a Worldwide Collection of Sainfoin Using Morphological, Anatomical, and Molecular Markers. Crop Sci. 2013;53:2483–2496. doi: 10.2135/cropsci2013.03.0130. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The list of primers and accessions used are provided in the paper. The full list of all putative SSR loci and the sainfoin transcriptome sequence is provided in a manuscript currently under review, and is also available from the corresponding author.


Articles from BMC Genetics are provided here courtesy of BMC

RESOURCES