Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1993 Feb;46(2):135–139. doi: 10.1136/jcp.46.2.135

Comparison of flow and static image cytometry in the determination of ploidy.

D Lanigan 1, P A McLean 1, B Curran 1, M Leader 1
PMCID: PMC501144  PMID: 8459033

Abstract

AIMS: To compare the efficiency of flow cytometry and computed image cytometry; and to see if a reliable set of guidelines regarding interpretation of histograms could be drawn up. METHODS: The two methods were applied to a series of 111 formalin fixed renal cell carcinomas. Data generated by both methods were compared. RESULTS: The methods agreed in 85 cases. Hypodiploidy was detected by computed image cytometry in seven cases in which flow cytometry had shown only an aneuploid peak. Aneuploidy in seven in which the corresponding flow cytometry histogram was diploid. There was an overlap in the second peak proportions on flow cytometry histograms between those classed as diploid or tetraploid by computed image cytometry. In six cases the flow cytometry histograms had unacceptably high coefficients of variation and in all of these cases computed image cytometry demonstrated aneuploidy. CONCLUSIONS: Computed image cytometry is particularly useful for clarifying difficult areas in flow histograms--specifically, high coefficients of variation, high G2M phase, as well as possible near diploid aneuploidy and hypodiploidy.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer T. W., Tubbs R. R., Edinger M. G., Suit P. F., Gephardt G. N., Levin H. S. A prospective comparison of DNA quantitation by image and flow cytometry. Am J Clin Pathol. 1990 Mar;93(3):322–326. doi: 10.1093/ajcp/93.3.322. [DOI] [PubMed] [Google Scholar]
  2. Claud R. D., 3rd, Weinstein R. S., Howeedy A., Straus A. K., Coon J. S. Comparison of image analysis of imprints with flow cytometry for DNA analysis of solid tumors. Mod Pathol. 1989 Sep;2(5):463–467. [PubMed] [Google Scholar]
  3. Currin S. M., Lee S. E., Walther P. J. Flow cytometric assessment of deoxyribonucleic acid content in renal adenocarcinoma: does ploidy status enhance prognostic stratification over stage alone? J Urol. 1990 Mar;143(3):458–463. doi: 10.1016/s0022-5347(17)39989-5. [DOI] [PubMed] [Google Scholar]
  4. Dawson A. E., Norton J. A., Weinberg D. S. Comparative assessment of proliferation and DNA content in breast carcinoma by image analysis and flow cytometry. Am J Pathol. 1990 May;136(5):1115–1124. [PMC free article] [PubMed] [Google Scholar]
  5. Eble J. N., Sledge G. Cellular deoxyribonucleic acid content of renal oncocytomas: flow cytometric analysis of paraffin-embedded tissues from eight tumors. J Urol. 1986 Aug;136(2):522–524. doi: 10.1016/s0022-5347(17)44935-4. [DOI] [PubMed] [Google Scholar]
  6. Fallenius A. G., Auer G. U., Carstensen J. M. Prognostic significance of DNA measurements in 409 consecutive breast cancer patients. Cancer. 1988 Jul 15;62(2):331–341. doi: 10.1002/1097-0142(19880715)62:2<331::aid-cncr2820620218>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  7. Fausel R. E., Burleigh W., Kaminsky D. B. DNA quantification in colorectal carcinoma using flow and image analysis cytometry. Anal Quant Cytol Histol. 1990 Feb;12(1):21–27. [PubMed] [Google Scholar]
  8. Grignon D. J., el-Naggar A., Green L. K., Ayala A. G., Ro J. Y., Swanson D. A., Troncoso P., McLemore D., Giacco G. G., Guinee V. F. DNA flow cytometry as a predictor of outcome of stage I renal cell carcinoma. Cancer. 1989 Mar 15;63(6):1161–1165. doi: 10.1002/1097-0142(19890315)63:6<1161::aid-cncr2820630620>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  9. Hedley D. W., Friedlander M. L., Taylor I. W., Rugg C. A., Musgrove E. A. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem. 1983 Nov;31(11):1333–1335. doi: 10.1177/31.11.6619538. [DOI] [PubMed] [Google Scholar]
  10. Koss L. G., Czerniak B., Herz F., Wersto R. P. Flow cytometric measurements of DNA and other cell components in human tumors: a critical appraisal. Hum Pathol. 1989 Jun;20(6):528–548. doi: 10.1016/0046-8177(89)90244-x. [DOI] [PubMed] [Google Scholar]
  11. Kumar S., Marsden H. B., Cowan R. A., Barnes J. M. Prognostic relevance of DNA content in childhood renal tumours. Br J Cancer. 1989 Feb;59(2):291–295. doi: 10.1038/bjc.1989.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Layfield L. J., Ritchie A. W., Ehrlich R. The relationship of deoxyribonucleic acid content to conventional prognostic factors in Wilms tumor. J Urol. 1989 Oct;142(4):1040–1043. doi: 10.1016/s0022-5347(17)38982-6. [DOI] [PubMed] [Google Scholar]
  13. McFadden P. W., Clowry L. J., Daehnert K., Hause L. L., Koethe S. M. Image analysis confirmation of DNA aneuploidy in flow cytometric DNA distributions having a wide coefficient of variation of the G0/G1 peak. Am J Clin Pathol. 1990 May;93(5):637–642. doi: 10.1093/ajcp/93.5.637. [DOI] [PubMed] [Google Scholar]
  14. Oud P. S., Pahlplatz M. M., Beck J. L., Wiersma-Van Tilburg A., Wagenaar S. J., Vooijs G. P. Image and flow DNA cytometry of small cell carcinoma of the lung. Cancer. 1989 Sep 15;64(6):1304–1309. doi: 10.1002/1097-0142(19890915)64:6<1304::aid-cncr2820640623>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  15. Patel S. R., Richardson R. L., Kvols L. Synchronous and metachronous bilateral testicular tumors. Mayo Clinic experience. Cancer. 1990 Jan 1;65(1):1–4. doi: 10.1002/1097-0142(19900101)65:1<1::aid-cncr2820650103>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  16. Rainwater L. M., Hosaka Y., Farrow G. M., Lieber M. M. Well differentiated clear cell renal carcinoma: significance of nuclear deoxyribonucleic acid patterns studied by flow cytometry. J Urol. 1987 Jan;137(1):15–20. doi: 10.1016/s0022-5347(17)43857-2. [DOI] [PubMed] [Google Scholar]
  17. Roos G., Stenling R., Ljungberg B. DNA content in renal cell carcinoma. A comparison between flow and static cytometric methods. Scand J Urol Nephrol. 1986;20(4):295–300. doi: 10.3109/00365598609024515. [DOI] [PubMed] [Google Scholar]
  18. Schneller J., Eppich E., Greenebaum E., Elequin F., Sherman A., Wersto R., Koss L. G. Flow cytometry and Feulgen cytophotometry in evaluation of effusions. Cancer. 1987 Apr 1;59(7):1307–1313. doi: 10.1002/1097-0142(19870401)59:7<1307::aid-cncr2820590713>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  19. Shackney S. E., Burholt D. R., Pollice A. A., Smith C. A., Pugh R. P., Hartsock R. J. Discrepancies between flow cytometric and cytogenetic studies in the detection of aneuploidy in human solid tumors. Cytometry. 1990;11(1):94–104. doi: 10.1002/cyto.990110111. [DOI] [PubMed] [Google Scholar]
  20. Taylor S. R., Titus-Ernstoff L., Stitely S. Central values and variation of measured nuclear DNA content in imprints of normal tissues determined by image analysis. Cytometry. 1989 Jul;10(4):382–387. doi: 10.1002/cyto.990100404. [DOI] [PubMed] [Google Scholar]
  21. Wilbur D. C., Zakowski M. F., Kosciol C. M., Sojda D. F., Pastuszak W. T. DNA ploidy in breast lesions. A comparative study using two commercial image analysis systems and flow cytometry. Anal Quant Cytol Histol. 1990 Feb;12(1):28–34. [PubMed] [Google Scholar]
  22. deKernion J. B., Mukamel E., Ritchie A. W., Blyth B., Hannah J., Bohman R. Prognostic significance of the DNA content of renal carcinoma. Cancer. 1989 Oct 15;64(8):1669–1673. doi: 10.1002/1097-0142(19891015)64:8<1669::aid-cncr2820640819>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES