Abstract
AIM: To discriminate between adenocarcinomas that are primary to the ovary and metastatic to the ovary, especially of colonic and breast origin, by immunohistochemistry, using stepwise discriminant analysis or a decision tree. METHODS: 312 routinely processed, formalin fixed tissue specimens were used. The tumours were divided into a learning set (n = 159), composed of primary tumours of ovary, breast, and colon, and a test set, comprising 134 metastases from these sites and an additional 19 primary ovarian carcinomas. The immunohistochemical panel was composed of antibodies against cytokeratin 7 (CK7) and 20 (CK20), CA125, vimentin, carcinoembryonic antigen (CEA), gross cystic disease fluid protein-15 (GCDFP-15), and the oestrogen receptor (ER). The staining results of the tumours were expressed as the product of the staining intensity and the percentage of positive tumour cells. Analyses were first performed on the learning set and then evaluated on the test set. RESULTS: Although the immunostaining patterns showed a considerable overlap between the three types of adenocarcinoma, the breast carcinomas were typically positive for GCDFP-15 and often for ER, and negative for vimentin. Ovarian carcinomas were always positive for CK7 and to a lesser extent for CA125. Colonic carcinomas showed prominent positivity for CEA and CK20, while no staining was seen for ER and vimentin. In discriminant analysis, six antibodies (alpha CK7, alpha CK20, alpha CA125, alpha CEA, alpha ER, and alpha GCDFP-15) appeared to be necessary for optimal classification: 89% of the learning set and 82% of the test set were classified correctly. In the decision tree, only four antibodies (alpha CK7, alpha CEA, alpha ER, and alpha GCDFP-15) were used to obtain a correct classification score of 89% for the learning set and 84% for the test set. CONCLUSIONS: Using a semiquantitative assessment of the immunostaining results by a restricted panel of six antibodies with stepwise discriminant analysis, 80-90% of the adenocarcinomas of colon, breast, and ovary can be correctly classified. Discriminant analysis is computer aided and therefore an easy method and for each case a probability value of the classification result is obtained. The intuitive decision tree method provides a slightly better result, requires only four antibodies, and offers a more practical method for the surgical pathologist.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts S. R., Ingle J. N., Roche P. R., Cha S. S., Wold L. E., Farr G. H., Jr, Krook J. E., Wieand H. S. Comparison of estrogen receptor determinations by a biochemical ligand-binding assay and immunohistochemical staining with monoclonal antibody ER1D5 in females with lymph node positive breast carcinoma entered on two prospective clinical trials. Cancer. 1996 Aug 15;78(4):764–772. doi: 10.1002/(SICI)1097-0142(19960815)78:4<764::AID-CNCR12>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
- Bast R. C., Jr, Feeney M., Lazarus H., Nadler L. M., Colvin R. B., Knapp R. C. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest. 1981 Nov;68(5):1331–1337. doi: 10.1172/JCI110380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berezowski K., Stastny J. F., Kornstein M. J. Cytokeratins 7 and 20 and carcinoembryonic antigen in ovarian and colonic carcinoma. Mod Pathol. 1996 Apr;9(4):426–429. [PubMed] [Google Scholar]
- Daya D., Nazerali L., Frank G. L. Metastatic ovarian carcinoma of large intestinal origin simulating primary ovarian carcinoma. A clinicopathologic study of 25 cases. Am J Clin Pathol. 1992 Jun;97(6):751–758. doi: 10.1093/ajcp/97.6.751. [DOI] [PubMed] [Google Scholar]
- Gagnon Y., Têtu B. Ovarian metastases of breast carcinoma. A clinicopathologic study of 59 cases. Cancer. 1989 Aug 15;64(4):892–898. doi: 10.1002/1097-0142(19890815)64:4<892::aid-cncr2820640422>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
- Guerrieri C., Frånlund B., Boeryd B. Expression of cytokeratin 7 in simultaneous mucinous tumors of the ovary and appendix. Mod Pathol. 1995 Jun;8(5):573–576. [PubMed] [Google Scholar]
- Helin H. J., Helle M. J., Kallioniemi O. P., Isola J. J. Immunohistochemical determination of estrogen and progesterone receptors in human breast carcinoma. Correlation with histopathology and DNA flow cytometry. Cancer. 1989 May 1;63(9):1761–1767. doi: 10.1002/1097-0142(19900501)63:9<1761::aid-cncr2820630918>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Henzen-Logmans S. C., Schipper N. W., Poels L. G., Stolk K., Kenemans P., Meyer C. J. Use of statistical evaluation of antigen profiles in differential diagnosis between colonic and ovarian adenocarcinomas. J Clin Pathol. 1988 Jun;41(6):644–649. doi: 10.1136/jcp.41.6.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabawat S. E., Bast R. C., Welch W. R., Knapp R. C., Colvin R. B. Immunopathologic characterization of a monoclonal antibody that recognizes common surface antigens of human ovarian tumors of serous, endometrioid, and clear cell types. Am J Clin Pathol. 1983 Jan;79(1):98–104. doi: 10.1093/ajcp/79.1.98. [DOI] [PubMed] [Google Scholar]
- Lagendijk J. H., Mullink H., Van Diest P. J., Meijer G. A., Meijer C. J. Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol. 1998 May;29(5):491–497. doi: 10.1016/s0046-8177(98)90065-x. [DOI] [PubMed] [Google Scholar]
- Lash R. H., Hart W. R. Intestinal adenocarcinomas metastatic to the ovaries. A clinicopathologic evaluation of 22 cases. Am J Surg Pathol. 1987 Feb;11(2):114–121. doi: 10.1097/00000478-198702000-00005. [DOI] [PubMed] [Google Scholar]
- Loy T. S., Calaluce R. D., Keeney G. L. Cytokeratin immunostaining in differentiating primary ovarian carcinoma from metastatic colonic adenocarcinoma. Mod Pathol. 1996 Nov;9(11):1040–1044. [PubMed] [Google Scholar]
- Loy T. S., Quesenberry J. T., Sharp S. C. Distribution of CA 125 in adenocarcinomas. An immunohistochemical study of 481 cases. Am J Clin Pathol. 1992 Aug;98(2):175–179. doi: 10.1093/ajcp/98.2.175. [DOI] [PubMed] [Google Scholar]
- Mazoujian G., Bodian C., Haagensen D. E., Jr, Haagensen C. D. Expression of GCDFP-15 in breast carcinomas. Relationship to pathologic and clinical factors. Cancer. 1989 Jun 1;63(11):2156–2161. doi: 10.1002/1097-0142(19890601)63:11<2156::aid-cncr2820631115>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- McCarty K. S., Jr, Miller L. S., Cox E. B., Konrath J., McCarty K. S., Sr Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 1985 Aug;109(8):716–721. [PubMed] [Google Scholar]
- Moll R., Löwe A., Laufer J., Franke W. W. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol. 1992 Feb;140(2):427–447. [PMC free article] [PubMed] [Google Scholar]
- Moll R., Pitz S., Levy R., Weikel W., Franke W. W., Czernobilsky B. Complexity of expression of intermediate filament proteins, including glial filament protein, in endometrial and ovarian adenocarcinomas. Hum Pathol. 1991 Oct;22(10):989–1001. doi: 10.1016/0046-8177(91)90007-c. [DOI] [PubMed] [Google Scholar]
- Monteagudo C., Merino M. J., LaPorte N., Neumann R. D. Value of gross cystic disease fluid protein-15 in distinguishing metastatic breast carcinomas among poorly differentiated neoplasms involving the ovary. Hum Pathol. 1991 Apr;22(4):368–372. doi: 10.1016/0046-8177(91)90084-3. [DOI] [PubMed] [Google Scholar]
- Nap M., Hammarström M. L., Börmer O., Hammarström S., Wagener C., Handt S., Schreyer M., Mach J. P., Buchegger F., von Kleist S. Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen. Cancer Res. 1992 Apr 15;52(8):2329–2339. [PubMed] [Google Scholar]
- Ollayos C. W., Riordan G. P., Rushin J. M. Estrogen receptor detection in paraffin sections of adenocarcinoma of the colon, pancreas, and lung. Arch Pathol Lab Med. 1994 Jun;118(6):630–632. [PubMed] [Google Scholar]
- Pavelic Z. P., Pavelic L., Pavelic K., Peacock J. S. Utility of anti-carcinoembryonic antigen monoclonal antibodies for differentiating ovarian adenocarcinomas from gastrointestinal metastasis to the ovary. Gynecol Oncol. 1991 Feb;40(2):112–117. doi: 10.1016/0090-8258(91)90101-a. [DOI] [PubMed] [Google Scholar]
- Pavelic Z. P., Petrelli N. J., Herrera L., Vaughan M. M., Paecock J. S., Pavelic L. D-14 monoclonal antibody to carcinoembryonic antigen: immunohistochemical analysis of formalin-fixed, paraffin-embedded human colorectal carcinoma, tumors of non-colorectal origin and normal tissues. J Cancer Res Clin Oncol. 1990;116(1):51–56. doi: 10.1007/BF01612640. [DOI] [PubMed] [Google Scholar]
- Ramaekers F., van Niekerk C., Poels L., Schaafsma E., Huijsmans A., Robben H., Schaart G., Vooijs P. Use of monoclonal antibodies to keratin 7 in the differential diagnosis of adenocarcinomas. Am J Pathol. 1990 Mar;136(3):641–655. [PMC free article] [PubMed] [Google Scholar]
- Sheahan K., O'Brien M. J., Burke B., Dervan P. A., O'Keane J. C., Gottlieb L. S., Zamcheck N. Differential reactivities of carcinoembryonic antigen (CEA) and CEA-related monoclonal and polyclonal antibodies in common epithelial malignancies. Am J Clin Pathol. 1990 Aug;94(2):157–164. doi: 10.1093/ajcp/94.2.157. [DOI] [PubMed] [Google Scholar]
- Takeda H., Yamakawa M., Takahashi T., Imai Y., Ishikawa M. An immunohistochemical study with an estrogen receptor-related protein (ER-D5) in human colorectal cancer. Cancer. 1992 Feb 15;69(4):907–912. doi: 10.1002/1097-0142(19920215)69:4<907::aid-cncr2820690412>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Ueda G., Sawada M., Ogawa H., Tanizawa O., Tsujimoto M. Immunohistochemical study of cytokeratin 7 for the differential diagnosis of adenocarcinomas in the ovary. Gynecol Oncol. 1993 Nov;51(2):219–223. doi: 10.1006/gyno.1993.1276. [DOI] [PubMed] [Google Scholar]
- Ulbright T. M., Roth L. M., Stehman F. B. Secondary ovarian neoplasia. A clinicopathologic study of 35 cases. Cancer. 1984 Mar 1;53(5):1164–1174. doi: 10.1002/1097-0142(19840301)53:5<1164::aid-cncr2820530523>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
- Van Niekerk C. C., Ramaekers F. C., Hanselaar A. G., Aldeweireldt J., Poels L. G. Changes in expression of differentiation markers between normal ovarian cells and derived tumors. Am J Pathol. 1993 Jan;142(1):157–177. [PMC free article] [PubMed] [Google Scholar]
- Viale G., Gambacorta M., Dell'Orto P., Coggi G. Coexpression of cytokeratins and vimentin in common epithelial tumours of the ovary: an immunocytochemical study of eighty-three cases. Virchows Arch A Pathol Anat Histopathol. 1988;413(2):91–101. doi: 10.1007/BF00749670. [DOI] [PubMed] [Google Scholar]
- Wauters C. C., Smedts F., Gerrits L. G., Bosman F. T., Ramaekers F. C. Keratins 7 and 20 as diagnostic markers of carcinomas metastatic to the ovary. Hum Pathol. 1995 Aug;26(8):852–855. doi: 10.1016/0046-8177(95)90006-3. [DOI] [PubMed] [Google Scholar]
- Webb M. J., Decker D. G., Mussey E. Cancer metastatic to the ovary: factors influencing survival. Obstet Gynecol. 1975 Apr;45(4):391–396. [PubMed] [Google Scholar]
- Wick M. R., Lillemoe T. J., Copland G. T., Swanson P. E., Manivel J. C., Kiang D. T. Gross cystic disease fluid protein-15 as a marker for breast cancer: immunohistochemical analysis of 690 human neoplasms and comparison with alpha-lactalbumin. Hum Pathol. 1989 Mar;20(3):281–287. doi: 10.1016/0046-8177(89)90137-8. [DOI] [PubMed] [Google Scholar]