Skip to main content
The American Journal of Tropical Medicine and Hygiene logoLink to The American Journal of Tropical Medicine and Hygiene
. 2016 Sep 7;95(3):610–613. doi: 10.4269/ajtmh.15-0747

D2 Region of the 28S RNA Gene: A Too-Conserved Fragment for Inferences on Phylogeny of South American Triatomines

Ana Letícia Guerra 1, Kaio Cesar Chaboli Alevi 1,*, Cecília Artico Banho 1, Jader de Oliveira 2, João Aristeu da Rosa 2, Maria Tercília Vilela de Azeredo-Oliveira 1
PMCID: PMC5014267  PMID: 27382073

Abstract

The brasiliensis complex is composed of five triatomine species, and different approaches suggest that Triatoma lenti and Triatoma petrochiae may be the new members. Therefore, this study sought to analyze the phylogenetic relationships within this complex by means of the D2 region of the 28S RNA gene, and to analyze the degree of polymorphism and phylogenetic significance of this gene for South American triatomines. Phylogenetic analysis by using sequence fragments of the D2 domain did not allow to perform phylogenetic inferences on species within the brasiliensis complex, because the gene alignment composed of a matrix with 37 specimens exhibited only two variable sites along the 567 base pairs used. Furthermore, if all South American species are included, only four variable sites were detected, reflecting the high degree of gene conservation. Therefore, we do not recommend the use of this gene for phylogenetic reconstruction for this group of Chagas disease vectors.


Triatomines are bloodsucking insects of great importance to public health because they transmit the protozoan Trypanosoma cruzi, the etiologic agent of Chagas disease. Since 1966, triatomines have been grouped into complexes and specific subcomplexes.1,2 Although the use of complexes and subcomplexes do not follow the International Code of Zoological Nomenclature, there is a consensus that these groupings should reflect the phylogeny.3

Using the morphological characteristics and geographical distribution mainly, Schofield and Galvão2 grouped most South American triatomine species within the infestans complex. This complex comprises the brasiliensis, infestans, maculata, matogrossensis, rubrovaria, and sordida subcomplexes.

With the exception of Triatoma melanocephala, Triatoma vitticeps, and Triatoma tibiamaculata, which exhibit fragmentation of the sex chromosome X, all infestans complex species have 22 chromosomes.47 Using mitochondrial genes (16S, COI, COII, and Cytb) and nuclear genes (18S and 28S), Justi and others3 analyzed the phylogenetic relationships of 64 species within the Triatominae subfamily and suggested that infestans and rubrovaria subcomplexes are monophyletic. The nonmonophyly of the brasiliensis subcomplex was then evidenced because T. melanocephala, T. vitticeps, and T. tibiamaculata were clustered separately, and they were then excluded via cytogenetic analysis.5,6 With these exclusions, the brasiliensis complex is indeed a monophyletic group composed of Triatoma brasiliensis, Triatoma juazeirensis, Triatoma melanica, and Triatoma sherlocki, and subspecies Triatoma brasiliensis macromelasoma.810 However, it is important to note that Triatoma lenti and Triatoma petrochiae were not used in the phylogenetic analyses mentioned previously, possibly due to their rarity. Cytogenetic data,6,11 experimental laboratory crossings,12 morphological analysis,2 and geographic information2 have also suggested that T. lenti may be a member of the complex. Triatoma petrochiae has cytogenetic characteristics similar to those of brasiliensis complex.6

The nuclear D2 region of the 28S RNA gene is frequently used in phylogenetic studies in the tribe Rhodniini,1315 and was recently analyzed in the brasiliensis complex.3 This gene consists of core segments that are highly conserved, and others useful for taxonomic purposes due to some variable regions, which are described as divergent D domains or expansion segments.16 Hillis and Dixon16 emphasized that the coexistence of variability and conserved regions along the 28S gene make this region suitable for estimating phylogenetic relationships among species, since sequence variation provides phylogenetic information, whereas the conserved structure makes it easier to identify homology.

Therefore, this study aimed to analyze the phylogenetic relationships that T. lenti and T. petrochiae share with other members of the brasiliensis complex using the nuclear D2 region of the 28S RNA gene. In addition, a comparative analysis including other species of the subcomplexes grouped within the infestans complex was conducted to address the degree of polymorphism and the phylogenetic significance of this gene among South American triatomines.

Six adult specimens of each species in the brasiliensis complex (with the exception of T. melanica, with only two samples) and six adult T. infestans specimens (the outgroup) were used in the present study, comprising a matrix with 37 sequences. The specimens were provided by the Triatomine Insectarium of the College of Pharmaceutical Sciences of São Paulo State University, Araraquara Campus, Brazil. The triatomines were dissected and genetic material was extracted from the legs using the DNeasy Blood and Tissue Kit (QIAGEN, São Paulo, Brazil) according to the manufacturer's instructions. Polymerase chain reaction (PCR) reactions were performed for amplification of the nuclear D2 variable region of the 28S RNA gene according to Porter and Collins,17 with the forward sequence: 5′-GCGAGTCGTGTTGCTTGATAGTGCAG-3′ and the reverse sequence: 5′-TTGGTCCGTGTTTCAAGACGGG-3′. The conditions for the amplification reactions of this gene were as follows: an initial cycle at 95°C for 2 minutes, followed by 40 cycles comprising denaturation (95°C, 30 seconds), annealing (68°C, 30 seconds) and extension (72°C, 1 minute), and a final single cycle at 72°C for 5 minutes. After electrophoresis, the amplified fragments were purified using the GFX PCR DNA and Gel Band kit (GE Healthcare and Life Technology, São Paulo, Brazil) according to the manufacturer's instructions.

Direct sequencing was applied to the purified PCR products. The samples were sent to the Human Genome and Stem Cell Research Center, of the University of São Paulo, Brazil. Sequences generated were analyzed using the BioEdit software, version 7.0.5 (Ibis Biosciences, Carlsbad, CA), and a consensus sequence was obtained for each DNA segment. The sequences were aligned using the ClustalW. Subsequently, the MEGA 6.0 program for phylogenetic analysis was used using the maximum likelihood method as a distance criterion. The bootstrapping resampling method was applied to assess support for the individual nodes (1,000 pseudoreplications). The Jukes–Cantor model was used to calculate genetic distances pairwise within each member of the complexes (Table 1) in the MEGA 6.0 software.

Table 1.

Jukes–Cantor distance between species of the infestans complex studied

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Triatoma infestans 1
Triatoma platensis 0.000
T. infestans 0.002 0.002
Triatoma wygodzinskyi 0.004 0.004 0.006
Triatoma sordida 0.004 0.004 0.006 0.000
Triatoma guasayana 0.004 0.004 0.006 0.000 0.000
Triatoma costalimai 0.004 0.004 0.006 0.000 0.000 0.000
Triatoma circummaculata 0.004 0.004 0.006 0.000 0.000 0.000 0.000
Triatoma baratai 0.004 0.004 0.006 0.000 0.000 0.000 0.000 0.000
Triatoma brasiliensis 0.006 0.006 0.007 0.004 0.004 0.004 0.004 0.004 0.004
T. brasiliensis 2 0.004 0.004 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Triatoma lenti 1 0.004 0.004 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000
Triatoma brasiliensis macromelasoma 1 0.004 0.004 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.000
Triatoma juazeirensis 1 0.004 0.004 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000
Triatoma petrochiae 1 0.004 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.002 0.002 0.002
Triatoma sherlocki 1 0.004 0.004 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.002
Triatoma melanica 1 0.004 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.002 0.002 0.002 0.000 0.002 0.000

In addition, the nuclear D2 variable region of the 28S RNA gene sequences deposited in GenBank for species from the infestans, maculata, matogrossensis, rubrovaria, sordida, and brasiliensis subcomplexes were used (Supplemental Table 1).

The nuclear D2 variable region of the 28S RNA gene did not allow to perform inferences on phylogenetic relationships among species within the brasiliensis complex due to the highly conserved nature of the fragments, with only two variable sites of 567 base pairs sequenced (Table 2 and Supplemental Figure 1). Furthermore, when aligned with the species of the infestans complex, the gene also proved to be extremely conserved, with only four variable sites (Table 3).

Table 2.

Polymorphic site determinants of the members of the brasiliensis complex, concerning the fragment of 567 base pairs of the nuclear D2 region of the 28S RNA gene

Species 384 514
Triatoma brasiliensis 2 T T
T. brasiliensis 4 T T
T. brasiliensis 5 T T
T. brasiliensis 6 C T
T. brasiliensis 7 C T
T. brasiliensis 1 T T
Triatoma lenti 1 T T
T. lenti 2 T T
T. lenti 3 T T
T. lenti 4 T T
T. lenti 5 T T
Triatoma brasiliensis macromelasoma 1 T T
T. b. macromelasoma 2 T T
T. b. macromelasoma 3 T T
T. b. macromelasoma 5 C T
T. b. macromelasoma 6 C T
T. b. macromelasoma 7 C T
Triatoma juazeirensis 1 T T
T. juazeirensis 3 C T
T. juazeirensis 4 T T
T. juazeirensis 5 T T
T. juazeirensis 6 C T
T. juazeirensis 7 T T
Triatoma petrochiae 1 C T
T. petrochiae 3 C T
T. petrochiae 4 C T
T. petrochiae 5 C T
T. petrochiae 6 C T
T. petrochiae 7 T T
Triatoma sherlocki 1 T T
T. sherlocki 2 T T
T. sherlocki 3 T T
T. sherlocki 4 T T
T. sherlocki 5 T T
T. sherlocki 7 C T
Triatoma melanica 1 C T
T. melanica 2 C T

Table 3.

Polymorphic site determinants of the members of the infestans complex, concerning the fragment of 567 base pairs of the nuclear D2 region of the 28S RNA gene

Species 179 384 468 514
Triatoma infestans GQ853397 C
Triatoma brasiliensis CQ853395 C T T
Triatoma wygodzinskyi KC249222 C T
Triatoma sordida KC249209 C T
Triatoma guasayana KC249163 C T
Triatoma costalimai KC249149 C T
Triatoma circummaculata KC249147 C T
Triatoma baratai KC249143 C T
T. brasiliensis 2 T T
T. brasiliensis 4 T T
T. brasiliensis 5 T T
T. brasiliensis 6 C T
T. brasiliensis 7 C T
T. brasiliensis 1 T T
Triatoma lenti 1 T T
T. lenti 2 T T
T. lenti 3 T T
T. lenti 4 T T
T. lenti 5 T T
Triatoma brasiliensis macromelasoma 1 T T
T. b. macromelasoma 2 T T
T. b. macromelasoma 3 T T
T. b. macromelasoma 5 C T
T. b. macromelasoma 6 . T
T. b. macromelasoma 7 C T
Triatoma juazeirensis 1 T T
T. juazeirensis 3 C T
T. juazeirensis 4 T T
T. juazeirensis 5 T T
T. juazeirensis 6 C T
T. juazeirensis 7 T T
T. petrochiae 1 C T
Triatoma petrochiae 3 C T
T. petrochiae 4 C T
T. petrochiae 5 C T
T. petrochiae 6 C T
T. petrochiae 7 T T
Triatoma sherlocki 1 T T
T. sherlocki 2 T T
T. sherlocki 3 T T
T. sherlocki 4 T T
T. sherlocki 5 T T
T. sherlocki 7 C T
Triatoma melanica 1 C T
T. melanica 2 C T

Phylogenetic analyses of the tribe Rhodniini showed that this gene had 9% of variable sites.13 For species within the brasiliensis complex, however, the gene had only 0.35% of variable sites, and for the species in the infestans complex, the gene had 0.70% of variable sites. It is natural for the nuclear genes that are less polymorphic than mitochondrial genes that have a rate of evolution by mutating five to ten times higher than a single copy nuclear gene.18 However, the Intergenic Spacer Region-2 nuclear intergenic region was found to have 22% of variable sites between T. infestans and the phyllosoma complex and 21.2% of variable sites between T. infestans and Dipetalogaster maxima.19 This region was also found to have many polymorphic sites compared with the tribes Triatomini and Rhodniini (85.8% variable sites).19

Recently, Justi and others3 stated that DNA barcoding (COI) relies on a gene that does not separate the triatomines from South America, as observed by at least one intraspecific distance greater than the interspecific distances for species in the infestans complex. Initially, four T. brasiliensis populations were separated based on genetic distance.20 Later, these populations were defined as T. melanica, T. juazeirensis, T. brasiliensis brasiliensis, and T. b. macromelasoma. The analysis of the distance matrix for the infestans complex species is in agreement with this study,20 because the nuclear D2 region of the 28S RNA gene exhibited low variation (Table 1). This finding once again reflects the high degree of conservation of the gene. Our analysis confirms that the nuclear D2 region of the 28S RNA gene is not a good molecular marker for triatomine species from South America.

Thus, the nuclear D2 region of the 28S RNA gene did not allow for the confirmation of the phylogenetic relationships of T. lenti and T. petrochiae in comparison with the species from the brasiliensis complex. This domain proved to be extremely conserved in the South American triatomine species, thus demonstrating the fact that it is not a good molecular marker for phylogenetic studies on these vectors.

Supplementary Material

Supplemental Datas.

SD3.pdf (444.3KB, pdf)

ACKNOWLEDGMENTS

We thank Carlos Eduardo Almeida, Universidade Federal da Paraiba, Brazil, for the assistance in the construction of the phylogenetic tree and the useful comments, and Claudia M. A. Carareto for lending the laboratory to perform the practical part of this work.

Footnotes

Financial support: The research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Authors' addresses: Ana Letícia Guerra, Kaio Cesar Chaboli Alevi, Cecília Artico Banho, and Maria Tercília Vilela de Azeredo-Oliveira, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (IBILCE–UNESP), São José do Rio Preto, Sao Paulo, Brazil, E-mails: analebio@yahoo.com.br, kaiochaboli@hotmail.com, ce_artico@hotmail.com, and tercilia@ibilce.unesp.br. Jader de Oliveira and João Aristeu da Rosa, Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil, E-mails: jdr.oliveira@hotmail.com and joaoaristeu@gmail.com.

References

  • 1.Usinger RL, Wygodzinsky P, Ryckman RE. The biosystematics of Triatominae. Annu Rev Entomol. 1966;11:309–330. doi: 10.1146/annurev.en.11.010166.001521. [DOI] [PubMed] [Google Scholar]
  • 2.Schofield CJ, Galvão C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009;110:88–100. doi: 10.1016/j.actatropica.2009.01.010. [DOI] [PubMed] [Google Scholar]
  • 3.Justi SA, Russo CAM, Mallet JRS, Obara MT, Galvão C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae) Parasit Vectors. 2014;7:149. doi: 10.1186/1756-3305-7-149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Panzera F, Pérez R, Panzera Y, Ferrandis I, Ferreiro MJ, Calleros L. Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae) Cytogenet Genome Res. 2010;128:77–87. doi: 10.1159/000298824. [DOI] [PubMed] [Google Scholar]
  • 5.Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV. Karyotype of Triatoma melanocephala Neiva and Pinto (1923). Does this species fit in the Brasiliensis subcomplex? Infect Genet Evol. 2012;12:1652–1653. doi: 10.1016/j.meegid.2012.06.011. [DOI] [PubMed] [Google Scholar]
  • 6.Alevi KCC, Rosa JA, Azeredo-Oliveira MTV. Cytotaxonomy of the Brasiliensis subcomplex and the Triatoma brasiliensis complex (Hemiptera: Reduviidae: Triatominae) Zootaxa. 2014;3838:583–589. doi: 10.11646/zootaxa.3838.5.7. [DOI] [PubMed] [Google Scholar]
  • 7.Alevi KCC, Oliveira J, Moreira FFF, Jurberg J, Rosa JA, Azeredo-Oliveira MTV. Chromosomal characteristics and distribution of constitutive heterochromatin in the Matogrossensis and Rubrovaria subcomplexes. Infect Genet Evol. 2015;33:158–162. doi: 10.1016/j.meegid.2015.04.024. [DOI] [PubMed] [Google Scholar]
  • 8.Monteiro FA, Donnelly MJ, Beard CB, Costa J. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in northeast Brazil. Mol Phylogenet Evol. 2004;32:46–56. doi: 10.1016/j.ympev.2003.12.011. [DOI] [PubMed] [Google Scholar]
  • 9.Mendonça VJ, Silva MTA, Araujo RF, Junior JM, Junior MB, Almeida CE, Costa J, Graminha MAS, Cicarelli RMB, Rosa JA. Phylogeny of Triatoma sherlocki (Hemiptera: Reduviidae: Triatominae) inferred from two mitochondrial genes suggests its location within the Triatoma brasiliensis complex. Am J Trop Med Hyg. 2009;81:858–864. doi: 10.4269/ajtmh.2009.08-0664. [DOI] [PubMed] [Google Scholar]
  • 10.Gardim S, Almeida CE, Takiya DM, Oliveira J, Araújo RF, Cicarelli RMB, Rosa JÁ. Multiple mitochondrial genes of some sylvatic Brazilian Triatoma: non-monophyly of the T. brasiliensis subcomplex and the need for a generic revision in the Triatomini. Infect Genet Evol. 2014;23:74–79. doi: 10.1016/j.meegid.2014.01.024. [DOI] [PubMed] [Google Scholar]
  • 11.Alevi KCC, Mendonça PP, Pereira NP, Guerra AL, Facina CH, Rosa JA, Azeredo-Oliveira MTV. Distribution of constitutive heterochromatin in two species of triatomines: Triatoma lenti Sherlock and Serafim (1967) and Triatoma sherlocki Papa, Jurberg, Carcavallo, Cerqueira and Barata (2002) Infect Genet Evol. 2013;13:301–303. doi: 10.1016/j.meegid.2012.11.011. [DOI] [PubMed] [Google Scholar]
  • 12.Mendonça VJ, Alevi KCC, Medeiros LMO, Nascimento JD, de Azeredo-Oliveira MTV, da Rosa JA. Cytogenetic and morphologic approaches of hybrids from experimental crosses between Triatoma lenti Sherlock and Serafim, 1967 and T. sherlocki Papa et al., 2002. (Hemiptera: Reduviidae) Infect Genet Evol. 2014;26:123–131. doi: 10.1016/j.meegid.2014.05.015. [DOI] [PubMed] [Google Scholar]
  • 13.Monteiro FA, Wesson DM, Dotson EM, Schofield CJ, Beard CB. Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. Am J Trop Med Hyg. 2000;62:460–465. doi: 10.4269/ajtmh.2000.62.460. [DOI] [PubMed] [Google Scholar]
  • 14.Monteiro FA, Barrett TV, Fitzpatrick S, Cordon-Rosales C, Feliciangeli D, Neard CB. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol. 2003;12:997–1006. doi: 10.1046/j.1365-294x.2003.01802.x. [DOI] [PubMed] [Google Scholar]
  • 15.Díaz S, Panzera F, Jaramillo-O N, Pérez R, Fernández R, Vallejo G, Saldanã A, Calzada JE, Triana O, Gómez-Palacio A. Genetic, cytogenetic and morphological trends in the evolution of the Rhodnius (Triatominae: Rhodniini) trans-Andean group. PLoS One. 2014;9:87493. doi: 10.1371/journal.pone.0087493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991;66:411–453. doi: 10.1086/417338. [DOI] [PubMed] [Google Scholar]
  • 17.Porter CH, Collins FH. Phylogeny of nearctic members of the Anopheles maculipennis species group derived from the D2 variable region of 28S ribosomal RNA. Mol Phyl Evol. 1996;6:178–188. doi: 10.1006/mpev.1996.0070. [DOI] [PubMed] [Google Scholar]
  • 18.Moritz C, Dowling TE, Brown WM. Evolution of animal mitochondrial DNA. Relevance for population biology and systematics. Annu Rev Ecol Evol Syst. 1987;18:269–292. [Google Scholar]
  • 19.Bargues MD, Marcilla A, Ramsey JM, Dujardin JP, Schofield CJ, Mas-Coma S. Nuclear rDNA-based molecular clock of the evolution of Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mem Inst Oswaldo Cruz. 2000;95:567–573. doi: 10.1590/s0074-02762000000400020. [DOI] [PubMed] [Google Scholar]
  • 20.Costa J, Freitas-Sibajev MGR, Marchon-Silva V, Pires MQ, Pacheco RS. Isoenzymes detected variation in populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae) Mem Inst Oswaldo Cruz. 1997;92:459–464. doi: 10.1590/s0074-02761997000400002. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental Datas.

SD3.pdf (444.3KB, pdf)

Articles from The American Journal of Tropical Medicine and Hygiene are provided here courtesy of The American Society of Tropical Medicine and Hygiene

RESOURCES