Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1999 Jun;52(6):455–460. doi: 10.1136/jcp.52.6.455

Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways.

J R Jass 1, K G Biden 1, M C Cummings 1, L A Simms 1, M Walsh 1, E Schoch 1, S J Meltzer 1, C Wright 1, J Searle 1, J Young 1, B A Leggett 1
PMCID: PMC501434  PMID: 10562815

Abstract

BACKGROUND: 10% of sporadic colorectal cancers are characterised by a low level of microsatellite instability (MSI-L). These are not thought to differ substantially from microsatelite-stable (MSS) cancers, but MSI-L and MSS cancers are distinguished clinicopathologically and in their spectrum of genetic alterations from cancers showing high level microsatellite instability (MSI-H). AIMS: To study the distribution of molecular alterations in a series of colorectal cancers stratified by DNA microsatellite instability. METHODS: A subset of an unselected series of colorectal cancers was grouped by the finding of DNA MSI at 0 loci (MSS) (n = 51), 1-2 loci (MSI-L) (n = 38) and 3-6 loci (MSI-H) (n = 25). The frequency of K-ras mutation, loss of heterozygosity (LOH) at 5q, 17p and 18q, and patterns of p53 and beta catenin immunohistochemistry was determined in the three groups. RESULTS: MSI-H cancers had a low frequency of K-ras mutation (7%), LOH on chromosomes 5q (0%), 17p (0%) and 18q (12.5%), and a normal pattern of immunostaining for p53 and beta catenin. MSI-L cancers differed from MSS cancers in terms of a higher frequency of K-ras mutation (54% v 27%) (p = 0.01) and lower frequency of 5q LOH (23% v 48%) (p = 0.047). Whereas aberrant beta catenin expression and 5q LOH were concordant (both present or both absent) in 57% of MSS cancers, concordance was observed in only 20% of MSI-L cancers (p = 0.01). CONCLUSIONS: MSI-L colorectal cancers are distinct from both MSI-H and MSS cancers. This subset combines features of the suppressor and mutator pathways, may be more dependent on K-ras than on the APC gene in the early stages of neoplastic evolution, and a proportion may be related histogenetically to the serrated (hyperplastic) polyp.

Full text

PDF
455

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajioka Y., Watanabe H., Jass J. R., Yokota Y., Kobayashi M., Nishikura K. Infrequent K-ras codon 12 mutation in serrated adenomas of human colorectum. Gut. 1998 May;42(5):680–684. doi: 10.1136/gut.42.5.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell S. M., Kelly S. A., Hoyle J. A., Lewis F. A., Taylor G. R., Thompson H., Dixon M. F., Quirke P. c-Ki-ras gene mutations in dysplasia and carcinomas complicating ulcerative colitis. Br J Cancer. 1991 Jul;64(1):174–178. doi: 10.1038/bjc.1991.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benhattar J., Losi L., Chaubert P., Givel J. C., Costa J. Prognostic significance of K-ras mutations in colorectal carcinoma. Gastroenterology. 1993 Apr;104(4):1044–1048. doi: 10.1016/0016-5085(93)90272-e. [DOI] [PubMed] [Google Scholar]
  4. Biden K. G., Simms L. A., Cummings M., Buttenshaw R., Schoch E., Searle J., Gobe G., Jass J. R., Meltzer S. J., Leggett B. A. Expression of Bcl-2 protein is decreased in colorectal adenocarcinomas with microsatellite instability. Oncogene. 1999 Feb 4;18(5):1245–1249. doi: 10.1038/sj.onc.1202413. [DOI] [PubMed] [Google Scholar]
  5. Bocker T., Diermann J., Friedl W., Gebert J., Holinski-Feder E., Karner-Hanusch J., von Knebel-Doeberitz M., Koelble K., Moeslein G., Schackert H. K. Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res. 1997 Nov 1;57(21):4739–4743. [PubMed] [Google Scholar]
  6. Cahill D. P., Lengauer C., Yu J., Riggins G. J., Willson J. K., Markowitz S. D., Kinzler K. W., Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998 Mar 19;392(6673):300–303. doi: 10.1038/32688. [DOI] [PubMed] [Google Scholar]
  7. Carethers J. M., Hawn M. T., Chauhan D. P., Luce M. C., Marra G., Koi M., Boland C. R. Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N'-nitro-N-nitrosoguanidine. J Clin Invest. 1996 Jul 1;98(1):199–206. doi: 10.1172/JCI118767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietmaier W., Wallinger S., Bocker T., Kullmann F., Fishel R., Rüschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 1997 Nov 1;57(21):4749–4756. [PubMed] [Google Scholar]
  9. Finkelstein S. D., Sayegh R., Christensen S., Swalsky P. A. Genotypic classification of colorectal adenocarcinoma. Biologic behavior correlates with K-ras-2 mutation type. Cancer. 1993 Jun 15;71(12):3827–3838. doi: 10.1002/1097-0142(19930615)71:12<3827::aid-cncr2820711207>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  10. Fujiwara T., Stolker J. M., Watanabe T., Rashid A., Longo P., Eshleman J. R., Booker S., Lynch H. T., Jass J. R., Green J. S. Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am J Pathol. 1998 Oct;153(4):1063–1078. doi: 10.1016/S0002-9440(10)65651-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grady W. M., Myeroff L. L., Swinler S. E., Rajput A., Thiagalingam S., Lutterbaugh J. D., Neumann A., Brattain M. G., Chang J., Kim S. J. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999 Jan 15;59(2):320–324. [PubMed] [Google Scholar]
  12. Grady W. M., Rajput A., Myeroff L., Liu D. F., Kwon K., Willis J., Markowitz S. Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. 1998 Jul 15;58(14):3101–3104. [PubMed] [Google Scholar]
  13. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992 Nov 13;71(4):543–546. doi: 10.1016/0092-8674(92)90586-2. [DOI] [PubMed] [Google Scholar]
  14. Haseloff J., Siemering K. R., Prasher D. C., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122–2127. doi: 10.1073/pnas.94.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heinen C. D., Richardson D., White R., Groden J. Microsatellite instability in colorectal adenocarcinoma cell lines that have full-length adenomatous polyposis coli protein. Cancer Res. 1995 Nov 1;55(21):4797–4799. [PubMed] [Google Scholar]
  16. Hiyama T., Yokozaki H., Shimamoto F., Haruma K., Yasui W., Kajiyama G., Tahara E. Frequent p53 gene mutations in serrated adenomas of the colorectum. J Pathol. 1998 Oct;186(2):131–139. doi: 10.1002/(SICI)1096-9896(1998100)186:2<131::AID-PATH158>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  17. Horii A., Han H. J., Shimada M., Yanagisawa A., Kato Y., Ohta H., Yasui W., Tahara E., Nakamura Y. Frequent replication errors at microsatellite loci in tumors of patients with multiple primary cancers. Cancer Res. 1994 Jul 1;54(13):3373–3375. [PubMed] [Google Scholar]
  18. Huang Y., Boynton R. F., Blount P. L., Silverstein R. J., Yin J., Tong Y., McDaniel T. K., Newkirk C., Resau J. H., Sridhara R. Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res. 1992 Dec 1;52(23):6525–6530. [PubMed] [Google Scholar]
  19. Iino H., Jass J. R., Simms L. A., Young J., Leggett B., Ajioka Y., Watanabe H. DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: a mild mutator pathway for colorectal cancer? J Clin Pathol. 1999 Jan;52(1):5–9. doi: 10.1136/jcp.52.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ionov Y., Peinado M. A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993 Jun 10;363(6429):558–561. doi: 10.1038/363558a0. [DOI] [PubMed] [Google Scholar]
  21. Ishimaru G., Adachi J., Shiseki M., Yamaguchi N., Muto T., Yokota J. Microsatellite instability in primary and metastatic colorectal cancers. Int J Cancer. 1995 Jun 22;64(3):153–157. doi: 10.1002/ijc.2910640302. [DOI] [PubMed] [Google Scholar]
  22. Iwao K., Nakamori S., Kameyama M., Imaoka S., Kinoshita M., Fukui T., Ishiguro S., Nakamura Y., Miyoshi Y. Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 1998 Mar 1;58(5):1021–1026. [PubMed] [Google Scholar]
  23. Jass J. R., Do K. A., Simms L. A., Iino H., Wynter C., Pillay S. P., Searle J., Radford-Smith G., Young J., Leggett B. Morphology of sporadic colorectal cancer with DNA replication errors. Gut. 1998 May;42(5):673–679. doi: 10.1136/gut.42.5.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jass J. R., Smith M. Sialic acid and epithelial differentiation in colorectal polyps and cancer--a morphological, mucin and lectin histochemical study. Pathology. 1992 Oct;24(4):233–242. doi: 10.3109/00313029209068874. [DOI] [PubMed] [Google Scholar]
  25. Jass J. R., Stewart S. M. Evolution of hereditary non-polyposis colorectal cancer. Gut. 1992 Jun;33(6):783–786. doi: 10.1136/gut.33.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jeevaratnam P., Cottier D. S., Browett P. J., Van De Water N. S., Pokos V., Jass J. R. Familial giant hyperplastic polyposis predisposing to colorectal cancer: a new hereditary bowel cancer syndrome. J Pathol. 1996 May;179(1):20–25. doi: 10.1002/(SICI)1096-9896(199605)179:1<20::AID-PATH538>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  27. Jen J., Powell S. M., Papadopoulos N., Smith K. J., Hamilton S. R., Vogelstein B., Kinzler K. W. Molecular determinants of dysplasia in colorectal lesions. Cancer Res. 1994 Nov 1;54(21):5523–5526. [PubMed] [Google Scholar]
  28. Kinzler K. W., Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996 Oct 18;87(2):159–170. doi: 10.1016/s0092-8674(00)81333-1. [DOI] [PubMed] [Google Scholar]
  29. Konishi M., Kikuchi-Yanoshita R., Tanaka K., Muraoka M., Onda A., Okumura Y., Kishi N., Iwama T., Mori T., Koike M. Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology. 1996 Aug;111(2):307–317. doi: 10.1053/gast.1996.v111.pm8690195. [DOI] [PubMed] [Google Scholar]
  30. Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784–1787. doi: 10.1126/science.275.5307.1784. [DOI] [PubMed] [Google Scholar]
  31. Lothe R. A., Peltomäki P., Meling G. I., Aaltonen L. A., Nyström-Lahti M., Pylkkänen L., Heimdal K., Andersen T. I., Møller P., Rognum T. O. Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res. 1993 Dec 15;53(24):5849–5852. [PubMed] [Google Scholar]
  32. Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R. S., Zborowska E., Kinzler K. W., Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995 Jun 2;268(5215):1336–1338. doi: 10.1126/science.7761852. [DOI] [PubMed] [Google Scholar]
  33. Molenaar M., van de Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., Roose J., Destrée O., Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996 Aug 9;86(3):391–399. doi: 10.1016/s0092-8674(00)80112-9. [DOI] [PubMed] [Google Scholar]
  34. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  35. Otori K., Oda Y., Sugiyama K., Hasebe T., Mukai K., Fujii T., Tajiri H., Yoshida S., Fukushima S., Esumi H. High frequency of K-ras mutations in human colorectal hyperplastic polyps. Gut. 1997 May;40(5):660–663. doi: 10.1136/gut.40.5.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Percesepe A., Kristo P., Aaltonen L. A., Ponz de Leon M., de la Chapelle A., Peltomäki P. Mismatch repair genes and mononucleotide tracts as mutation targets in colorectal tumors with different degrees of microsatellite instability. Oncogene. 1998 Jul 16;17(2):157–163. doi: 10.1038/sj.onc.1201944. [DOI] [PubMed] [Google Scholar]
  37. Perucho M. Cancer of the microsatellite mutator phenotype. Biol Chem. 1996 Nov;377(11):675–684. [PubMed] [Google Scholar]
  38. Rampino N., Yamamoto H., Ionov Y., Li Y., Sawai H., Reed J. C., Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997 Feb 14;275(5302):967–969. doi: 10.1126/science.275.5302.967. [DOI] [PubMed] [Google Scholar]
  39. Simms L. A., Radford-Smith G., Biden K. G., Buttenshaw R., Cummings M., Jass J. R., Young J., Meltzer S. J., Leggett B. A. Reciprocal relationship between the tumor suppressors p53 and BAX in primary colorectal cancers. Oncogene. 1998 Oct 15;17(15):2003–2008. doi: 10.1038/sj.onc.1202109. [DOI] [PubMed] [Google Scholar]
  40. Souza R. F., Appel R., Yin J., Wang S., Smolinski K. N., Abraham J. M., Zou T. T., Shi Y. Q., Lei J., Cottrell J. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet. 1996 Nov;14(3):255–257. doi: 10.1038/ng1196-255. [DOI] [PubMed] [Google Scholar]
  41. Sparks A. B., Morin P. J., Vogelstein B., Kinzler K. W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998 Mar 15;58(6):1130–1134. [PubMed] [Google Scholar]
  42. Tanaka M., Omura K., Watanabe Y., Oda Y., Nakanishi I. Prognostic factors of colorectal cancer: K-ras mutation, overexpression of the p53 protein, and cell proliferative activity. J Surg Oncol. 1994 Sep;57(1):57–64. doi: 10.1002/jso.2930570115. [DOI] [PubMed] [Google Scholar]
  43. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  44. Thibodeau S. N., French A. J., Cunningham J. M., Tester D., Burgart L. J., Roche P. C., McDonnell S. K., Schaid D. J., Vockley C. W., Michels V. V. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res. 1998 Apr 15;58(8):1713–1718. [PubMed] [Google Scholar]
  45. Uchida H., Ando H., Maruyama K., Kobayashi H., Toda H., Ogawa H., Ozawa T., Matsuda Y., Sugimura H., Kanno T. Genetic alterations of mixed hyperplastic adenomatous polyps in the colon and rectum. Jpn J Cancer Res. 1998 Mar;89(3):299–306. doi: 10.1111/j.1349-7006.1998.tb00562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  47. Wicking C., Simms L. A., Evans T., Walsh M., Chawengsaksophak K., Beck F., Chenevix-Trench G., Young J., Jass J., Leggett B. CDX2, a human homologue of Drosophila caudal, is mutated in both alleles in a replication error positive colorectal cancer. Oncogene. 1998 Aug 6;17(5):657–659. doi: 10.1038/sj.onc.1201971. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES