Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 15;89(20):9549–9553. doi: 10.1073/pnas.89.20.9549

Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study.

O Strada 1, S Vyas 1, E C Hirsch 1, M Ruberg 1, A Brice 1, Y Agid 1, F Javoy-Agid 1
PMCID: PMC50169  PMID: 1409664

Abstract

The subnormal choline acetyltransferase (ChoAcTase) activity in the cerebral cortex of patients with Alzheimer disease (AD) is thought to originate from the loss of cholinergic neurons in the nucleus basalis of Meynert (nbM). To examine possible changes in the functional activity of the remaining cholinergic neurons in the nbM of patients with AD, the level of expression of ChoAcTase mRNA was evaluated. A procedure for double-labeling cholinergic neurons to detect ChoAcTase mRNA and the corresponding protein in the same cell was developed, taking advantage of an anti-ChoAcTase antibody and the recently isolated cDNA complementary to a sequence of the human ChoAcTase mRNA. In the study of three controls and four patients with AD, the presence of both ChoAcTase mRNA and protein was observed in the same large neurons in both nbM and putamen. Specificity of in situ hybridization was further supported by the absence of neuronal staining with a sense probe. In AD patients a subnormal level of expression of ChoAcTase mRNA per cholinergic cell was detected in the nbM but not in the putamen. Our data support the hypothesis that expression of ChoAcTase mRNA might be down-regulated in the surviving cholinergic neurons in the nbM of patients with AD, raising the possibility of functional restoration by stimulating ChoAcTase synthesis.

Full text

PDF
9549

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berrard S., Brice A., Lottspeich F., Braun A., Barde Y. A., Mallet J. cDNA cloning and complete sequence of porcine choline acetyltransferase: in vitro translation of the corresponding RNA yields an active protein. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9280–9284. doi: 10.1073/pnas.84.24.9280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bisconte J., Fulcrand J., Marty R. Analyse radioautographique dans le système nerveux central par photométrie et cartographie combinées. C R Seances Soc Biol Fil. 1968;162(12):2178–2181. [PubMed] [Google Scholar]
  3. Brice A., Berrard S., Raynaud B., Ansieau S., Coppola T., Weber M. J., Mallet J. Complete sequence of a cDNA encoding an active rat choline acetyltransferase: a tool to investigate the plasticity of cholinergic phenotype expression. J Neurosci Res. 1989 Jul;23(3):266–273. doi: 10.1002/jnr.490230304. [DOI] [PubMed] [Google Scholar]
  4. Cavicchioli L., Flanigan T. P., Dickson J. G., Vantini G., Dal Toso R., Fusco M., Walsh F. S., Leon A. Choline acetyltransferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor. Brain Res Mol Brain Res. 1991 Mar;9(4):319–325. doi: 10.1016/0169-328x(91)90079-d. [DOI] [PubMed] [Google Scholar]
  5. Chesselet M. F., Weiss L., Wuenschell C., Tobin A. J., Affolter H. U. Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia: an in situ hybridization study in the rodent brain. J Comp Neurol. 1987 Aug 1;262(1):125–140. doi: 10.1002/cne.902620110. [DOI] [PubMed] [Google Scholar]
  6. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  7. Fischer W., Björklund A., Chen K., Gage F. H. NGF improves spatial memory in aged rodents as a function of age. J Neurosci. 1991 Jul;11(7):1889–1906. doi: 10.1523/JNEUROSCI.11-07-01889.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer W., Wictorin K., Björklund A., Williams L. R., Varon S., Gage F. H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature. 1987 Sep 3;329(6134):65–68. doi: 10.1038/329065a0. [DOI] [PubMed] [Google Scholar]
  9. Fontaine B., Sassoon D., Buckingham M., Changeux J. P. Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 1988 Mar;7(3):603–609. doi: 10.1002/j.1460-2075.1988.tb02853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iraizoz I., de Lacalle S., Gonzalo L. M. Cell loss and nuclear hypertrophy in topographical subdivisions of the nucleus basalis of Meynert in Alzheimer's disease. Neuroscience. 1991;41(1):33–40. doi: 10.1016/0306-4522(91)90198-w. [DOI] [PubMed] [Google Scholar]
  11. Javoy-Agid F., Hirsch E. C., Dumas S., Duyckaerts C., Mallet J., Agid Y. Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson's disease: an in situ hybridization study. Neuroscience. 1990;38(1):245–253. doi: 10.1016/0306-4522(90)90389-l. [DOI] [PubMed] [Google Scholar]
  12. Koliatsos V. E., Nauta H. J., Clatterbuck R. E., Holtzman D. M., Mobley W. C., Price D. L. Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J Neurosci. 1990 Dec;10(12):3801–3813. doi: 10.1523/JNEUROSCI.10-12-03801.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamy C., Duyckaerts C., Delaere P., Payan C., Fermanian J., Poulain V., Hauw J. J. Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients. Neuropathol Appl Neurobiol. 1989 Nov-Dec;15(6):563–578. doi: 10.1111/j.1365-2990.1989.tb01255.x. [DOI] [PubMed] [Google Scholar]
  14. Lehéricy S., Hirsch E. C., Cervera P., Hersh L. B., Hauw J. J., Ruberg M., Agid Y. Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8580–8584. doi: 10.1073/pnas.86.21.8580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lehéricy S., Hirsch E. C., Hersh L. B., Agid Y. Cholinergic neuronal loss in the globus pallidus of Alzheimer disease patients. Neurosci Lett. 1991 Feb 25;123(2):152–155. doi: 10.1016/0304-3940(91)90918-j. [DOI] [PubMed] [Google Scholar]
  16. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  17. Mesulam M. M., Mufson E. J., Levey A. I., Wainer B. H. Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience. 1984 Jul;12(3):669–686. doi: 10.1016/0306-4522(84)90163-5. [DOI] [PubMed] [Google Scholar]
  18. Mobley W. C., Woo J. E., Edwards R. H., Riopelle R. J., Longo F. M., Weskamp G., Otten U., Valletta J. S., Johnston M. V. Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen. Neuron. 1989 Nov;3(5):655–664. doi: 10.1016/0896-6273(89)90276-6. [DOI] [PubMed] [Google Scholar]
  19. Pasinetti G. M., Lerner S. P., Johnson S. A., Morgan D. G., Telford N. A., Finch C. E. Chronic lesions differentially decrease tyrosine hydroxylase messenger RNA in dopaminergic neurons of the substantia nigra. Brain Res Mol Brain Res. 1989 May;5(3):203–209. doi: 10.1016/0169-328x(89)90036-3. [DOI] [PubMed] [Google Scholar]
  20. Perry E. K., Tomlinson B. E., Blessed G., Bergmann K., Gibson P. H., Perry R. H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978 Nov 25;2(6150):1457–1459. doi: 10.1136/bmj.2.6150.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perry R. H., Candy J. M., Perry E. K., Irving D., Blessed G., Fairbairn A. F., Tomlinson B. E. Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer's disease. Neurosci Lett. 1982 Dec 13;33(3):311–315. doi: 10.1016/0304-3940(82)90391-3. [DOI] [PubMed] [Google Scholar]
  22. Raisman-Vozari R., Hirsch E., Javoy-Agid F., Vassort C., Savasta M., Feuerstein C., Thibault J., Agid Y. Quantitative autoradiography of tyrosine hydroxylase immunoreactivity in the rat brain. J Neurochem. 1991 Oct;57(4):1212–1222. doi: 10.1111/j.1471-4159.1991.tb08282.x. [DOI] [PubMed] [Google Scholar]
  23. Ransmayr G., Cervera P., Hirsch E., Ruberg M., Hersh L. B., Duyckaerts C., Hauw J. J., Delumeau C., Agid Y. Choline acetyltransferase-like immunoreactivity in the hippocampal formation of control subjects and patients with Alzheimer's disease. Neuroscience. 1989;32(3):701–714. doi: 10.1016/0306-4522(89)90291-1. [DOI] [PubMed] [Google Scholar]
  24. Rossor M. N., Garrett N. J., Johnson A. L., Mountjoy C. Q., Roth M., Iversen L. L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain. 1982 Jun;105(Pt 2):313–330. doi: 10.1093/brain/105.2.313. [DOI] [PubMed] [Google Scholar]
  25. Thoenen H., Edgar D. Neurotrophic factors. Science. 1985 Jul 19;229(4710):238–242. doi: 10.1126/science.2409599. [DOI] [PubMed] [Google Scholar]
  26. Vogels O. J., Broere C. A., ter Laak H. J., ten Donkelaar H. J., Nieuwenhuys R., Schulte B. P. Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer's disease. Neurobiol Aging. 1990 Jan-Feb;11(1):3–13. doi: 10.1016/0197-4580(90)90056-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES