Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1993 Dec;46(12):1105–1108. doi: 10.1136/jcp.46.12.1105

Rapid HLA typing by multiplex amplification refractory mutation system.

P Patel 1, Y M Lo 1, J I Bell 1, J S Wainscoat 1
PMCID: PMC501720  PMID: 8282833

Abstract

AIMS--To detect HLA susceptibility and protective alleles associated with insulin dependent diabetes mellitus (IDDM) using a multiplex amplification refractory mutation system (ARMS). These include DR3 and DR4 alleles at the DRB1 locus, presence or absence of aspartic acid at position 57 (Asp-57) of the DQB1 locus, and presence or absence of arginine at position 52 (Arg-52) of the DQA1 locus. METHODS--The ARMS approach was used to design allele specific primers for the detection of the major susceptibility and protective alleles for IDDM. These include DR3 and DR4 alleles at the DRB1 locus, Asp-57 and non-Asp-57 at the DQB1 locus, and Arg-52 and non-Arg-52 alleles at the DQA1 locus. The allele specificity of each set of primers was first tested separately using DNA samples from 15 individuals previously typed for the DRB1, DQB1, and DQA1 loci using the sequence specific oligonucleotide (SSO) technique. The possibility of using multiplex ARMS for typing multiple susceptibility/protective alleles for IDDM was further investigated by testing various combinations of allele specific primers, thereby reducing the number of separate polymerase chain reactions required to type all these alleles. RESULTS--A "three-tube" system worked well and gave accurate results. Tube 1 contained ARMS primers for the detection of IDDM susceptibility alleles DR3 and DR4; tube 2 contained ARMS primers for the detection of susceptibility alleles non-Asp-57 and Arg-52; and tube 3 contained ARMS primers for the detection of the protective alleles Asp-57 and non-Arg-52. DNA samples typed with this ARMS method were in complete agreement with those obtained using the SSO technique. CONCLUSION--This method is rapid and has no requirement for radioactivity. It is an efficient method for population screening.

Full text

PDF
1105

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bugawan T. L., Erlich H. A. Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics. 1991;33(3):163–170. doi: 10.1007/BF01719235. [DOI] [PubMed] [Google Scholar]
  2. Chamberlain J. S., Gibbs R. A., Ranier J. E., Nguyen P. N., Caskey C. T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988 Dec 9;16(23):11141–11156. doi: 10.1093/nar/16.23.11141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dorman J. S., LaPorte R. E., Stone R. A., Trucco M. Worldwide differences in the incidence of type I diabetes are associated with amino acid variation at position 57 of the HLA-DQ beta chain. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7370–7374. doi: 10.1073/pnas.87.19.7370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Khalil I., d'Auriol L., Gobet M., Morin L., Lepage V., Deschamps I., Park M. S., Degos L., Galibert F., Hors J. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest. 1990 Apr;85(4):1315–1319. doi: 10.1172/JCI114569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kwok S., Kellogg D. E., McKinney N., Spasic D., Goda L., Levenson C., Sninsky J. J. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990 Feb 25;18(4):999–1005. doi: 10.1093/nar/18.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lo Y. M., Mehal W. Z., Wordsworth B. P., Chapman R. W., Fleming K. A., Bell J. I., Wainscoat J. S. HLA typing by double ARMS. Lancet. 1991 Jul 6;338(8758):65–66. doi: 10.1016/0140-6736(91)90067-y. [DOI] [PubMed] [Google Scholar]
  7. Lo Y. M., Patel P., Mehal W. Z., Fleming K. A., Bell J. I., Wainscoat J. S. Analysis of complex genetic systems by ARMS-SSCP: application to HLA genotyping. Nucleic Acids Res. 1992 Mar 11;20(5):1005–1009. doi: 10.1093/nar/20.5.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lo Y. M., Patel P., Newton C. R., Markham A. F., Fleming K. A., Wainscoat J. S. Direct haplotype determination by double ARMS: specificity, sensitivity and genetic applications. Nucleic Acids Res. 1991 Jul 11;19(13):3561–3567. doi: 10.1093/nar/19.13.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marsh S. G., Bodmer J. G. HLA class II nucleotide sequences, 1991. Immunogenetics. 1991;33(5-6):321–334. doi: 10.1007/BF00216691. [DOI] [PubMed] [Google Scholar]
  10. Morel P. A., Dorman J. S., Todd J. A., McDevitt H. O., Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8111–8115. doi: 10.1073/pnas.85.21.8111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Newton C. R., Kalsheker N., Graham A., Powell S., Gammack A., Riley J., Markham A. F. Diagnosis of alpha 1-antitrypsin deficiency by enzymatic amplification of human genomic DNA and direct sequencing of polymerase chain reaction products. Nucleic Acids Res. 1988 Sep 12;16(17):8233–8243. doi: 10.1093/nar/16.17.8233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Owerbach D., Gunn S., Ty G., Wible L., Gabbay K. H. Oligonucleotide probes for HLA-DQA and DQB genes define susceptibility to type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1988 Oct;31(10):751–757. doi: 10.1007/BF00274778. [DOI] [PubMed] [Google Scholar]
  14. Owerbach D., Lernmark A., Platz P., Ryder L. P., Rask L., Peterson P. A., Ludvigsson J. HLA-D region beta-chain DNA endonuclease fragments differ between HLA-DR identical healthy and insulin-dependent diabetic individuals. Nature. 1983 Jun 30;303(5920):815–817. doi: 10.1038/303815a0. [DOI] [PubMed] [Google Scholar]
  15. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  16. Thomson G., Robinson W. P., Kuhner M. K., Joe S., MacDonald M. J., Gottschall J. L., Barbosa J., Rich S. S., Bertrams J., Baur M. P. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet. 1988 Dec;43(6):799–816. [PMC free article] [PubMed] [Google Scholar]
  17. Todd J. A., Bell J. I., McDevitt H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987 Oct 15;329(6140):599–604. doi: 10.1038/329599a0. [DOI] [PubMed] [Google Scholar]
  18. Wordsworth B. P., Allsopp C. E., Young R. P., Bell J. I. HLA-DR typing using DNA amplification by the polymerase chain reaction and sequential hybridization to sequence-specific oligonucleotide probes. Immunogenetics. 1990;32(6):413–418. doi: 10.1007/BF00241635. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES