Abstract
To define the role of malaria parasite enzymes during the process of erythrocyte invasion, we have developed an in vitro serum-free invasion assay of mouse erythrocytes by purified Plasmodium chabaudi merozoites. The sensitivity of a merozoite-specific serine protease (p68) to various inhibitors and the effect of these inhibitors on invasion indicate a crucial role for p68. The substrate specificity of the purified enzyme has been partially defined using fluorogenic peptides. Consistent with this, in vitro incubation of mouse erythrocytes with the merozoite enzyme led to the cleavage of band 3 protein. The possible implication of erythrocyte band 3 truncation for the successful entry of the merozoite into the erythrocyte is discussed.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banyal H. S., Misra G. C., Gupta C. M., Dutta G. P. Involvement of malarial proteases in the interaction between the parasite and host erythrocyte in Plasmodium knowlesi infections. J Parasitol. 1981 Oct;67(5):623–626. [PubMed] [Google Scholar]
- Barale J. C., Langsley G., Mangel W. F., Braun-Breton C. Malarial proteases: assignment of function to activity. Res Immunol. 1991 Oct;142(8):672–681. doi: 10.1016/0923-2494(91)90148-c. [DOI] [PubMed] [Google Scholar]
- Bennett V. Proteins involved in membrane--cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods Enzymol. 1983;96:313–324. doi: 10.1016/s0076-6879(83)96029-9. [DOI] [PubMed] [Google Scholar]
- Bode W., Greyling H. J., Huber R., Otlewski J., Wilusz T. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett. 1989 Jan 2;242(2):285–292. doi: 10.1016/0014-5793(89)80486-7. [DOI] [PubMed] [Google Scholar]
- Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braun-Breton C., Jendoubi M., Brunet E., Perrin L., Scaife J., Pereira da Silva L. In vivo time course of synthesis and processing of major schizont membrane polypeptides in Plasmodium falciparum. Mol Biochem Parasitol. 1986 Jul;20(1):33–43. doi: 10.1016/0166-6851(86)90140-4. [DOI] [PubMed] [Google Scholar]
- Braun-Breton C., Pereira da Silva L. Activation of a Plasmodium falciparum protease correlated with merozoite maturation and erythrocyte invasion. Biol Cell. 1988;64(2):223–231. doi: 10.1016/0248-4900(88)90081-0. [DOI] [PubMed] [Google Scholar]
- Braun-Breton C., Rosenberry T. L., da Silva L. P. Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature. 1988 Mar 31;332(6163):457–459. doi: 10.1038/332457a0. [DOI] [PubMed] [Google Scholar]
- Brinkmann T., Schnierer S., Tschesche H. Recombinant aprotinin homologue with new inhibitory specificity for cathepsin G. Eur J Biochem. 1991 Nov 15;202(1):95–99. doi: 10.1111/j.1432-1033.1991.tb16348.x. [DOI] [PubMed] [Google Scholar]
- Crandall I., Sherman I. W. Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band 3 protein. Parasitology. 1991 Jun;102(Pt 3):335–340. doi: 10.1017/s0031182000064271. [DOI] [PubMed] [Google Scholar]
- Dluzewski A. R., Rangachari K., Wilson R. J., Gratzer W. B. Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp Parasitol. 1986 Dec;62(3):416–422. doi: 10.1016/0014-4894(86)90050-0. [DOI] [PubMed] [Google Scholar]
- Dvorak J. A., Miller L. H., Whitehouse W. C., Shiroishi T. Invasion of erythrocytes by malaria merozoites. Science. 1975 Feb 28;187(4178):748–750. doi: 10.1126/science.803712. [DOI] [PubMed] [Google Scholar]
- Falanga P. B., Franco da Silveira J. F., Pereira da Silva L. Protective immune response to Plasmodium chabaudi, developed by mice after drug controlled infection or vaccination with parasite extracts: analysis of stage specific antigens from the asexual blood cycle. Parasite Immunol. 1984 Nov;6(6):529–543. doi: 10.1111/j.1365-3024.1984.tb00823.x. [DOI] [PubMed] [Google Scholar]
- Friedman M. J., Fukuda M., Laine R. A. Evidence for a malarial parasite interaction site on the major transmembrane protein of the human erythrocyte. Science. 1985 Apr 5;228(4695):75–77. doi: 10.1126/science.3883494. [DOI] [PubMed] [Google Scholar]
- Hadley T., Aikawa M., Miller L. H. Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp Parasitol. 1983 Jun;55(3):306–311. doi: 10.1016/0014-4894(83)90027-9. [DOI] [PubMed] [Google Scholar]
- Jay D., Cantley L. Structural aspects of the red cell anion exchange protein. Annu Rev Biochem. 1986;55:511–538. doi: 10.1146/annurev.bi.55.070186.002455. [DOI] [PubMed] [Google Scholar]
- Jering H., Tschesche H. Replacement of lysine by arginine, phenylalanine and tryptophan in the reactive site of the bovine trypsin-kallikrein inhibitor (Kunitz) and change of the inhibitory properties. Eur J Biochem. 1976 Jan 15;61(2):453–463. doi: 10.1111/j.1432-1033.1976.tb10039.x. [DOI] [PubMed] [Google Scholar]
- Klotz F. W., Chulay J. D., Daniel W., Miller L. H. Invasion of mouse erythrocytes by the human malaria parasite, Plasmodium falciparum. J Exp Med. 1987 Jun 1;165(6):1713–1718. doi: 10.1084/jem.165.6.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopito R. R., Lodish H. F. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature. 1985 Jul 18;316(6025):234–238. doi: 10.1038/316234a0. [DOI] [PubMed] [Google Scholar]
- Leatherbarrow R. J., Salacinski H. J. Design of a small peptide-based proteinase inhibitor by modeling the active-site region of barley chymotrypsin inhibitor 2. Biochemistry. 1991 Nov 5;30(44):10717–10721. doi: 10.1021/bi00108a016. [DOI] [PubMed] [Google Scholar]
- Miller L. H., Haynes J. D., McAuliffe F. M., Shiroishi T., Durocher J. R., McGinniss M. H. Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi. J Exp Med. 1977 Jul 1;146(1):277–281. doi: 10.1084/jem.146.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller L. H., Hudson D., Rener J., Taylor D., Hadley T. J., Zilberstein D. A monoclonal antibody to rhesus erythrocyte band 3 inhibits invasion by malaria (Plasmodium knowlesi) merozoites. J Clin Invest. 1983 Oct;72(4):1357–1364. doi: 10.1172/JCI111092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okoye V. C., Bennett V. Plasmodium falciparum malaria: band 3 as a possible receptor during invasion of human erythrocytes. Science. 1985 Jan 11;227(4683):169–171. doi: 10.1126/science.3880920. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]