Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 15;89(20):9799–9803. doi: 10.1073/pnas.89.20.9799

Second-site revertants of an arginine-210 to lysine mutation in the a subunit of the F0F1-ATPase from Escherichia coli: implications for structure.

S M Howitt 1, G B Cox 1
PMCID: PMC50220  PMID: 1409702

Abstract

Arg-210 of the a subunit of the Escherichia coli F0F1-ATPase has been proposed previously as a component of the proton pore. A mutant in which lysine was substituted for Arg-210 was generated and was found to be unable to translocate protons. A plasmid carrying this mutation, along with wild-type genes encoding the c and b subunits, was unusual in that it failed to complement a chromosomal c-subunit mutation on succinate minimal medium. Three revertants on succinate minimal medium contained plasmids that showed complementation with chromosomal c-subunit but not with a-subunit mutations. One of these had a deletion in the a subunit. The other two were point mutations, resulting in the substitution of aspartic acid by Gly-53 and of arginine for Leu-211. The Gly-53 to aspartic acid change implied that Gly-53 and Arg-210 are normally in close proximity. To test this idea further, a series of mutants in which aspartic acid was placed in helix I at positions ranging from 42 to 57 was generated. Full complementation was regained only when the aspartic acid residue was present on the same side of a putative helix as Gly-53 over a span of three turns of the alpha-helix. These results and others suggest modifications of a previously proposed model for the transmembrane helices of the F0 portion of the F0F1-ATPase. The implications of these modifications for the mechanism of proton translocation are discussed.

Full text

PDF
9799

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjørbaek C., Foërsom V., Michelsen O. The transmembrane topology of the a [corrected] subunit from the ATPase in Escherichia coli analyzed by PhoA protein fusions. FEBS Lett. 1990 Jan 15;260(1):31–34. doi: 10.1016/0014-5793(90)80058-q. [DOI] [PubMed] [Google Scholar]
  2. Cain B. D., Simoni R. D. Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. J Biol Chem. 1986 Aug 5;261(22):10043–10050. [PubMed] [Google Scholar]
  3. Cain B. D., Simoni R. D. Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli. J Biol Chem. 1988 May 15;263(14):6606–6612. [PubMed] [Google Scholar]
  4. Cain B. D., Simoni R. D. Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. J Biol Chem. 1989 Feb 25;264(6):3292–3300. [PubMed] [Google Scholar]
  5. Cox G. B., Fimmel A. L., Gibson F., Hatch L. The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. Biochim Biophys Acta. 1986 Apr 2;849(1):62–69. doi: 10.1016/0005-2728(86)90096-4. [DOI] [PubMed] [Google Scholar]
  6. Cox G. B., Jans D. A., Gibson F., Langman L., Senior A. E., Fimmel A. L. Oxidative phosphorylation by mutant Escherichia coli membranes with impaired proton permeability. Biochem J. 1983 Oct 15;216(1):143–150. doi: 10.1042/bj2160143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox G. B., Newton N. A., Gibson F., Snoswell A. M., Hamilton J. A. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. doi: 10.1042/bj1170551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downie J. A., Cox G. B., Langman L., Ash G., Becker M., Gibson F. Three genes coding for subunits of the membrane sector (F0) of the Escherichia coli adenosine triphosphatase complex. J Bacteriol. 1981 Jan;145(1):200–210. doi: 10.1128/jb.145.1.200-210.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehrmann M., Boyd D., Beckwith J. Genetic analysis of membrane protein topology by a sandwich gene fusion approach. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7574–7578. doi: 10.1073/pnas.87.19.7574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eya S., Maeda M., Futai M. Role of the carboxyl terminal region of H(+)-ATPase (F0F1) a subunit from Escherichia coli. Arch Biochem Biophys. 1991 Jan;284(1):71–77. doi: 10.1016/0003-9861(91)90265-k. [DOI] [PubMed] [Google Scholar]
  11. Gibson F., Cox G. B., Downie J. A., Radik J. A mutation affecting a second component of the F0 portion of the magnesium ion-stimulated adenosine triphosphatase of Escherichia coli K12. The uncC424 allele. Biochem J. 1977 Apr 15;164(1):193–198. doi: 10.1042/bj1640193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibson F., Cox G. B., Downie J. A., Radik J. Partial diploids of Escherichia coli carrying normal and mutant alleles affecting oxidative phosphorylation. Biochem J. 1977 Mar 15;162(3):665–670. doi: 10.1042/bj1620665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  14. Hoppe J., Schairer H. U., Friedl P., Sebald W. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett. 1982 Aug 16;145(1):21–29. doi: 10.1016/0014-5793(82)81198-8. [DOI] [PubMed] [Google Scholar]
  15. Hoppe J., Schairer H. U., Sebald W. The proteolipid of a mutant ATPase from Escherichia coli defective in H+-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue. FEBS Lett. 1980 Jan 1;109(1):107–111. doi: 10.1016/0014-5793(80)81321-4. [DOI] [PubMed] [Google Scholar]
  16. Howitt S. M., Gibson F., Cox G. B. The proton pore of the F0F1-ATPase of Escherichia coli: Ser-206 is not required for proton translocation. Biochim Biophys Acta. 1988 Oct 26;936(1):74–80. doi: 10.1016/0005-2728(88)90253-8. [DOI] [PubMed] [Google Scholar]
  17. Howitt S. M., Lightowlers R. N., Gibson F., Cox G. B. Mutational analysis of the function of the a-subunit of the F0F1-APPase of Escherichia coli. Biochim Biophys Acta. 1990 Feb 2;1015(2):264–268. doi: 10.1016/0005-2728(90)90030-8. [DOI] [PubMed] [Google Scholar]
  18. Jans D. A., Fimmel A. L., Langman L., James L. B., Downie J. A., Senior A. E., Ash G. R., Gibson F., Cox G. B. Mutations in the uncE gene affecting assembly of the c-subunit of the adenosine triphosphatase of Escherichia coli. Biochem J. 1983 Jun 1;211(3):717–726. doi: 10.1042/bj2110717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis M. J., Chang J. A., Simoni R. D. A topological analysis of subunit alpha from Escherichia coli F1F0-ATP synthase predicts eight transmembrane segments. J Biol Chem. 1990 Jun 25;265(18):10541–10550. [PubMed] [Google Scholar]
  22. Lightowlers R. N., Howitt S. M., Hatch L., Gibson F., Cox G. B. The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta. 1987 Dec 17;894(3):399–406. doi: 10.1016/0005-2728(87)90118-6. [DOI] [PubMed] [Google Scholar]
  23. Lightowlers R. N., Howitt S. M., Hatch L., Gibson F., Cox G. The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability. Biochim Biophys Acta. 1988 Apr 22;933(2):241–248. doi: 10.1016/0005-2728(88)90031-x. [DOI] [PubMed] [Google Scholar]
  24. Miller M. J., Oldenburg M., Fillingame R. H. The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4900–4904. doi: 10.1073/pnas.87.13.4900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Senior A. E. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem. 1990;19:7–41. doi: 10.1146/annurev.bb.19.060190.000255. [DOI] [PubMed] [Google Scholar]
  27. Walker J. E., Saraste M., Gay N. J. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta. 1984 Sep 6;768(2):164–200. doi: 10.1016/0304-4173(84)90003-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES