Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1995 May;48(5):424–428. doi: 10.1136/jcp.48.5.424

Loss of heterozygosity on chromosome 11 q in breast cancer.

I P Tomlinson 1, J E Strickland 1, A S Lee 1, L Bromley 1, M F Evans 1, J Morton 1, J O McGee 1
PMCID: PMC502617  PMID: 7629288

Abstract

AIMS--Chromosome 11q23 seems to be a site of frequent mutation in cancer. It also contains loci such as ataxia telangiectasia with possible importance in the pathogenesis of breast tumours. The short arm of chromosome 11 has been studied extensively in breast cancer, but the long arm, in particular the distal part, has been studied less frequently. Cytogenetic analysis has shown possible involvement of chromosome 11q in breast tumours. Chromosome transfer experiments have also implicated chromosome 11q in breast cancer. A high frequency of mutations might therefore be expected to occur on chromosome 11q in breast cancers. METHODS--Using restriction fragment analysis, the primary tumours of 41 patients with breast cancer were screened for mutations at five loci on chromosome 11q (D11Z1, INT2, (FGF3), DRD2, NCAM, and D11S29). RESULTS--Allelic loss occurred at a high frequency (59%) at D11S29. At NCAM, novel alleles were frequently seen on autoradiographs. Relatively low frequencies of mutation were detected at the other loci. Allelic loss at D11S29 was associated with the presence of lymph node metastases, but this may be a chance association. CONCLUSIONS--The frequency of allelic loss at the DS11S29 locus is high. The significance of novel alleles at NCAM and their relation to allelic loss at D11S29 are unclear. The results presented here do not permit fine mapping of a region of allelic loss, but suggest that the region of greatest loss lies distal to DRD2. The results provide further evidence for the importance of gene(s) near 11q23 in the pathogenesis of breast cancer, and of tumours in general.

Full text

PDF
424

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen T. I., Gaustad A., Ottestad L., Farrants G. W., Nesland J. M., Tveit K. M., Børresen A. L. Genetic alterations of the tumour suppressor gene regions 3p, 11p, 13q, 17p, and 17q in human breast carcinomas. Genes Chromosomes Cancer. 1992 Mar;4(2):113–121. doi: 10.1002/gcc.2870040203. [DOI] [PubMed] [Google Scholar]
  2. Callahan R., Cropp C. S., Merlo G. R., Liscia D. S., Cappa A. P., Lidereau R. Somatic mutations and human breast cancer. A status report. Cancer. 1992 Mar 15;69(6 Suppl):1582–1588. doi: 10.1002/1097-0142(19920315)69:6+<1582::aid-cncr2820691313>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  3. Devilee P., van Vliet M., van Sloun P., Kuipers Dijkshoorn N., Hermans J., Pearson P. L., Cornelisse C. J. Allelotype of human breast carcinoma: a second major site for loss of heterozygosity is on chromosome 6q. Oncogene. 1991 Sep;6(9):1705–1711. [PubMed] [Google Scholar]
  4. Diatloff-Zito C., Duchaud E., Viegas-Pequignot E., Fraser D., Moustacchi E. Identification and chromosomal localization of a DNA fragment implicated in the partial correction of the Fanconi anemia group D cellular defect. Mutat Res. 1994 May 1;307(1):33–42. doi: 10.1016/0027-5107(94)90275-5. [DOI] [PubMed] [Google Scholar]
  5. Ferti-Passantonopoulou A., Panani A. D., Raptis S. Preferential involvement of 11q23-24 and 11p15 in breast cancer. Cancer Genet Cytogenet. 1991 Feb;51(2):183–188. doi: 10.1016/0165-4608(91)90130-m. [DOI] [PubMed] [Google Scholar]
  6. Foulkes W. D., Campbell I. G., Stamp G. W., Trowsdale J. Loss of heterozygosity and amplification on chromosome 11q in human ovarian cancer. Br J Cancer. 1993 Feb;67(2):268–273. doi: 10.1038/bjc.1993.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Futreal P. A., Söderkvist P., Marks J. R., Iglehart J. D., Cochran C., Barrett J. C., Wiseman R. W. Detection of frequent allelic loss on proximal chromosome 17q in sporadic breast carcinoma using microsatellite length polymorphisms. Cancer Res. 1992 May 1;52(9):2624–2627. [PubMed] [Google Scholar]
  8. Hainsworth P. J., Raphael K. L., Stillwell R. G., Bennett R. C., Garson O. M. Cytogenetic features of twenty-six primary breast cancers. Cancer Genet Cytogenet. 1991 Jun;53(2):205–218. doi: 10.1016/0165-4608(91)90097-e. [DOI] [PubMed] [Google Scholar]
  9. Keldysh P. L., Dragani T. A., Fleischman E. W., Konstantinova L. N., Perevoschikov A. G., Pierotti M. A., Della Porta G., Kopnin B. P. 11q deletions in human colorectal carcinomas: cytogenetics and restriction fragment length polymorphism analysis. Genes Chromosomes Cancer. 1993 Jan;6(1):45–50. doi: 10.1002/gcc.2870060109. [DOI] [PubMed] [Google Scholar]
  10. Kenmotsu M., Gouchi A., Maruo Y., Murashima N., Hiramoto Y., Iwagaki H., Orita K. [The expression of neural cell adhesion molecule (NCAM), neural invasion and recurrence patterns in rectal cancer--a study using anti-NACM (neural cell adhesion molecule) antibody]. Nihon Geka Gakkai Zasshi. 1994 Feb;95(2):66–70. [PubMed] [Google Scholar]
  11. Kobayashi H., Espinosa R., 3rd, Fernald A. A., Begy C., Diaz M. O., Le Beau M. M., Rowley J. D. Analysis of deletions of the long arm of chromosome 11 in hematologic malignancies with fluorescence in situ hybridization. Genes Chromosomes Cancer. 1993 Dec;8(4):246–252. doi: 10.1002/gcc.2870080407. [DOI] [PubMed] [Google Scholar]
  12. Negrini M., Sabbioni S., Possati L., Rattan S., Corallini A., Barbanti-Brodano G., Croce C. M. Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res. 1994 Mar 1;54(5):1331–1336. [PubMed] [Google Scholar]
  13. Pippard E. C., Hall A. J., Barker D. J., Bridges B. A. Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. Cancer Res. 1988 May 15;48(10):2929–2932. [PubMed] [Google Scholar]
  14. Rygaard K., Møller C., Bock E., Spang-Thomsen M. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts. Br J Cancer. 1992 Apr;65(4):573–577. doi: 10.1038/bjc.1992.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schuuring E., Verhoeven E., van Tinteren H., Peterse J. L., Nunnink B., Thunnissen F. B., Devilee P., Cornelisse C. J., van de Vijver M. J., Mooi W. J. Amplification of genes within the chromosome 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res. 1992 Oct 1;52(19):5229–5234. [PubMed] [Google Scholar]
  16. Theillet C., Le Roy X., De Lapeyrière O., Grosgeorges J., Adnane J., Raynaud S. D., Simony-Lafontaine J., Goldfarb M., Escot C., Birnbaum D. Amplification of FGF-related genes in human tumors: possible involvement of HST in breast carcinomas. Oncogene. 1989 Jul;4(7):915–922. [PubMed] [Google Scholar]
  17. Tomlinson I. P., Gammack A. J., Stickland J. E., Mann G. J., MacKie R. M., Kefford R. F., McGee J. O. Loss of heterozygosity in malignant melanoma at loci on chromosome 11 and 17 implicated in the pathogenesis of other cancers. Genes Chromosomes Cancer. 1993 Jul;7(3):169–172. doi: 10.1002/gcc.2870070310. [DOI] [PubMed] [Google Scholar]
  18. Trent J., Yang J. M., Emerson J., Dalton W., McGee D., Massey K., Thompson F., Villar H. Clonal chromosome abnormalities in human breast carcinomas. II. Thirty-four cases with metastatic disease. Genes Chromosomes Cancer. 1993 Aug;7(4):194–203. doi: 10.1002/gcc.2870070403. [DOI] [PubMed] [Google Scholar]
  19. Winqvist R., Mannermaa A., Alavaikko M., Blanco G., Taskinen P. J., Kiviniemi H., Newsham I., Cavenee W. Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. Cancer Res. 1993 Oct 1;53(19):4486–4488. [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES