Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2017 Oct 1.
Published in final edited form as: Neurobiol Learn Mem. 2016 Jul 20;134(Pt B):221–235. doi: 10.1016/j.nlm.2016.07.018

Contextual fear conditioning induces differential alternative splicing

Shane G Poplawski a,2, Lucia Peixoto b,c,3, Giulia S Porcari b, Mathieu E Wimmer d, Anna G McNally a, Keiko Mizuno e, K Peter Giese e, Snehajyoti Chatterjee b, John N Koberstein c, Davide Risso f, Terence P Speed g,h,i, Ted Abel a,b,*
PMCID: PMC5028328  NIHMSID: NIHMS810557  PMID: 27451143

Abstract

The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning.

Keywords: Transcription, Alternative splicing, RNA-seq, Fear conditioning, Homer1

1. Introduction

Contextual fear conditioning requires two waves of transcription and protein synthesis in the hippocampus to form long-term memory (Bourtchouladze et al., 1998; Igaz, Vianna, Medina, & Izquierdo, 2002). Our lab and others have focused on discovering the genes regulated during these transcriptional waves using both candidate gene and genome-wide approaches. Our microarray-based studies have indicated that the first wave of transcription induces the largest change in gene expression 30 min after contextual learning (Peixoto, Wimmer et al., 2015). However, gene regulation is a complex process that has multiple layers of control. Levels of particular mRNA isoforms can be regulated by alternative start sites, differential splicing including exon skipping and intron retention, and alternative poly(A) site selection (Leff, Rosenfeld, & Evans, 1986; Raj & Blencowe, 2015). Alternative splicing can lead to distinct protein function and interactions (Ellis et al., 2012) or regulate mRNA localization (Ehlers, Fung, O’Brien, & Huganir, 1998; Jaskolski et al., 2004; Papandrikopoulou, Doll, Tucker, Garner, & Matus, 1989), and thus is expected to be particularly important in neurons, which need to traffic mRNA to their long cellular processes.

Most previous research studying genome-wide gene expression in the hippocampus after contextual learning has relied on microarray technology (Barnes, Kirtley, & Thomas, 2012; Cavallaro, D’Agata, Manickam, Dufour, & Alkon, 2002; Keeley et al., 2006; Klur et al., 2009; Levenson et al., 2004; Mei et al., 2005; Peixoto, Wimmer et al., 2015). Although microarrays are a reliable tool to measure changes in gene expression, they are unable to distinguish exon-level effects that are indicative of alternative splicing. RNA-seq provides numerous advantages over microarrays (Peixoto, Risso et al., 2015), including the ability to study exon-level changes in gene expression. Isoform-specific gene expression changes are known to occur after fear conditioning, including upregulation of Bdnf IV, but not other Bdnf isoforms (Lubin, Roth, & Sweatt, 2008; Mizuno, Dempster, Mill, & Giese, 2012), and Homer1a, but not Homer1c (Mahan et al., 2012) in response to strong, three shock training protocols. The different Bdnf isoforms have distinct transcription start sites, while the expression of Homer1 isoforms is controlled by the splicing regulator SRp20 (Wang, Chikina, Pincas, & Sealfon, 2014), which is upregulated after learning (Antunes-Martins, Mizuno, Irvine, Lepicard, & Giese, 2007). These examples indicate that gene regulation after learning is more complex than gene-level differences and can be highly selective for particular isoforms of a gene.

Therefore, we used RNA-seq to study differential alternative splicing 30 min after contextual fear conditioning and 30 min after memory retrieval. Applying Remove Unwanted Variation (RUV), a recently designed normalization algorithm (Peixoto, Risso et al., 2015; Risso, Ngai, Speed, & Dudoit, 2014), to our data, we discovered 171 bins, corresponding to either an entire exon or any portion of a gene, across 138 genes that showed differential expression after learning independent of changes at the gene-level. After memory retrieval 450 differentially expressed bins corresponding to 311 unique genes were discovered. These bins include retained introns, unique start/end sites, or small RNA not yet spliced out of the polyadenylated mRNA. The differences include Snord14e, a small nucleolar RNA, which our lab has previously shown to be regulated at this time point (Peixoto, Wimmer et al., 2015). Sno-RNAs, which are commonly found within introns of genes, regulate RNA processing and have been implicated in memory consolidation (Rogelj, Hartmann, Yeo, Hunt, & Giese, 2003). In addition, Ania-3, an alternative short form of Homer1 that has not previously been linked to learning, ribosome biogenesis regulator Las1l, and the RNA-binding protein Rbm3 were also regulated by contextual fear conditioning. These findings demonstrate that alternative splicing is regulated by contextual learning on a genome-wide scale and also identify novel candidate isoforms that may be pertinent to memory consolidation.

2. Materials and methods

2.1. Subjects

C57Bl/6J mice were maintained under standard conditions with food and water available ad libitum. Adult male mice 2 months of age were kept on a 12-h light/12-h dark cycle with lights on at 7AM. All behavioral and biochemical experiments were performed during the light cycle with training starting at 10AM (ZT3). All animal experiments were approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania and were consistent with National Institutes of Health guidelines.

2.2. Behavior

Contextual fear conditioning was performed as previously described (Hawk et al., 2012; Vecsey et al., 2007) with handling for 3 days prior to conditioning. Briefly, the conditioning protocol entailed a single 2-s, 1.5 mA footshock terminating at 2.5 min after placement of the mouse in the chamber. Mice were left in the chamber for an additional 30 s and then returned to their homecage. One mouse per behavioral group (homecage, fear conditioned) was trained per day over 10 days to reduce unwanted variation caused by training and sacrifice times. One mouse was also tested the next day to ensure proper freezing levels (Peixoto, Wimmer et al., 2015).

2.3. RNA isolation

Hippocampi were dissected either from homecage mice or 30 min after training and placed into RNAlater (Qiagen Valencia, CA) and frozen on dry ice. Tissue was homogenized using a TissueLyser system and RNA was extracted using the RNAeasy Microarray Tissue kit (Qiagen) according to the manufacturer’s instructions. Samples were DNase treated using the RNase-Free DNase kit (Qiagen) off-column by incubating 5 μl DNase and 35 μl Buffer RDD for 25 min at RT with each sample. Samples were then ethanol precipitated and resuspended in water.

2.4. RNA-seq library preparation and sequencing

2 μg of RNA from n = 5 homecage and fear conditioned mice was used in the TruSeq RNA Sample Prep Kit (Illumina San Diego, CA) according to the manufacturer’s instructions with polyA selection. Completed libraries were size-selected on an agarose gel to remove any high basepair fragments, quantified by qPCR (KAPA Biosystems Boston, MA), and submitted to the PGFI sequencing core at the University of Pennsylvania. An Illumina HiSeq 2000 sequenced the libraries in paired-end 100 bp reads. 3 libraries were sequenced per lane on an Illumina HiSeq 2000, resulting in an average of 67,011,105 reads per sample in the homecage mice and 62,115,805 reads per sample after fear conditioning. Reads had good unique concordance (86.9% in homecage, 85.5% after fear conditioning) and mapping (90.7% of unique concordant reads in homecage and 93.1% after fear conditioning). RNA-seq data is available through GEO (GSE63412) (Peixoto, Risso et al., 2015).

2.5. Data analysis

Sequencing reads were aligned to the mouse mm9 genome using GSNAP (Wu & Nacu, 2010) (http://share.gene.com/gmap). An exon-level count table was produced by counting reads into unique, non-overlapping “bins” using Ensembl gene models and HTSeq (Anders, Reyes, & Huber, 2012) (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html). A “bin” can either be any part of a gene or an entire exon depending on the uniqueness of the region. Bin counts were normalized using upper-quartile scaling implemented in edgeR (Robinson, McCarthy, & Smyth, 2010) followed by RUVs, which corrects for unwanted variation using replicate/negative control samples (Risso et al., 2014). Additionally, we used 8897 bins residing in 625 genes identified as unchanged from a previous microarray experiment as negative controls for RUV under the assumption that these bins are also not changing (Peixoto, Risso et al., 2015; Peixoto, Wimmer et al., 2015). We discovered that four factors of unwanted variation (k = 4) need to be adjusted for to resolve the differences caused by contextual fear, which was chosen using the method described by Peixoto, Risso et al. (2015). Differential splicing analysis was performed with the limma Bioconductor package, using the voom and diffSplice functions (Law, Chen, Shi, & Smyth, 2014; Ritchie et al., 2015). Functional annotation was performed through DAVID (Huang da, Sherman, & Lempicki, 2009a, 2009b) (http://david.abcc.ncifcrf.gov/). The annotation was limited to the following sources: GO Biological process, GO Molecular Function, KEGG pathways, and SwissProt and Protein Information Resource keywords and an EASE score restriction of 0.1.

2.6. qPCR analysis

RNA was isolated from a separate cohort of fear conditioned, immediate shock, or context only mice following the same behavioral paradigms described above. Immediate shock consisted of placing the mouse in the context with the footshock on and immediate removal, while context involved placing the mouse in the context for the same time as contextual conditioning with no shock. RNA was converted to cDNA using the RETROscript kit (Ambion) according to the manufacturer’s instructions. cDNA reactions were diluted to 200 μl and 2.25 μl was combined with 0.25 μl 5 μM primer mix and 2.5 μl SYBR Select Master Mix (Life Technologies Carlsbad, CA) and run on a Viia7 Real Time PCR system. The ΔΔCt method was used for analysis (Poplawski et al., 2014), with all primers showing >90% efficiency. The primers used were: Ania1F-AGTGGCTGGTTTTCTTGGACT, Ania1R-GGGAGGTGGATTGGTGACAA, Homer1Bin21F-CTGGAGTCCACTGCCAATGT, Home r1Bin21R-CTCTGCTTCCTCCTGGTACG, Las1lBin15F-TCAAAGTCAGAGGGGTCGGA, Las1Bin15R-AGACTTCGCTCTTGCTGCTT, Las1lBin17F-TGCTGGAGAAACACAGGCAT, Las1lBin17R-ACATTGTACACGTGGGGAAAGA, Rbm3Bin2F-ACCTGAGTTTTGGAGGCTGG, Rbm3Bi n2R-ACAACAGCGGACACCATAGG, Rbm3Bin7F-GGTGGCTATGACCGCTACTC, Rbm3Bin7R-TTTTGTGTGCATGCCCCATC, Rbm3Bin22F-TGCCCCTGGCAGACATAGAG, Rbm3Bin22R-GTCTGCCACTTTCTTCGTTCTTT. The comparison between three groups (homecage, immediate shock, context only) was analyzed using an ANOVA. The effect of bin (F(7, 160) = 11.90), condition (F(2, 160) = 7.835) and interaction (F(14, 160) = 3.719) were all significant, and Tukey tests were used to determine the significance of each bin.

3. Results

RNA-seq has the advantage of distinguishing exon-level reads that are difficult to identify by any other method, and therefore it is an ideal technique to study alternative splicing. We used RNA-seq to study gene expression in the hippocampus 30 min after contextual fear conditioning, a time point our lab has previously determined to show robust expression changes after fear conditioning (Peixoto, Wimmer et al., 2015). We used GSNAP (Wu & Nacu, 2010) to align reads to the mm9 mouse genome and HTSeq (Anders, Pyl, & Huber, 2015) to count reads into bins (Anders et al., 2012) using Ensembl gene models. Bins are separated based on overlap of Ensembl gene models, with any unique section of a transcriptional unit split into a separate bins. Therefore, a bin can represent either a whole exon or any other unique portion of the gene model. Thus, differential start sites, 3′ ends, or retained introns can be observed as unique bins if they are part of the Ensembl database. So as not to bias ourselves using gene models, we considered every bin as a potential site for alternative regulation. RUVs normalization performed as described (Risso et al., 2014), adjusting for four factors of unwanted variation (which can include biological and technical noise), was found to control for fear conditioning as the primary effector of variation between samples. Bioconductor package limma was then used to determine differential bin usage independent of gene-level changes (Ritchie et al., 2015). We identified 171 bins across 138 genes that displayed differential usage (FDR < 0.05) after contextual fear conditioning (Table 1). 129 of these bins were upregulated and 42 were downregulated, consistent with the general increase in gene expression after fear conditioning (Peixoto, Wimmer et al., 2015). We performed functional classification of genes showing at least 1 bin-specific change after fear conditioning. The SwissProt and Protein Information Resource keywords “phosphoprotein” and “alternative splicing” were enriched in our data set, indicating that our exon-level analysis discovers alternative splicing as expected. Clusters corresponding to protein catabolic processes and nucleotide binding were also enriched. The same analysis was performed on samples 30 min after memory retrieval (testing). In this analysis, we found 450 bins corresponding to 311 unique genes (Table 2). This list of genes contains 70 of the 138 genes observed to change after fear conditioning, highlighting the overlap between memory consolidation and retrieval (Peixoto, Wimmer et al., 2015).

Table 1.

List of bins showing differential expression after fear conditioning. Each differential bin contains the chromosome, start position, and end position for easy reference.

GeneID Gene name Bin
#
Chr Start Stop Strand logFC t P value FDR
ENSMUSG00000007617 Homer1 018 chr13 94136356 94137083 + 2.0 14.1 1.4E–33 3.7E–28
ENSMUSG00000029657 Hsph1 012 chr5 150423259 150426039 1.1 10.3 2.4E–21 3.3E–16
ENSMUSG00000039801 2410089E03Rik 053 chr15 8201065 8202148 + −1.1 −9.2 9.6E–19 8.6E–14
ENSMUSG00000031167 Rbm3 002 chrX 7716104 7717909 1.0 9.0 3.5E–17 2.3E–12
ENSMUSG00000007617 Homer1 017 chr13 94136233 94136355 + 1.9 8.4 3.5E–15 1.9E–10
ENSMUSG00000020431 Adcy1 024 chr11 7072883 7078509 + −0.4 −8.4 5.5E–15 2.4E–10
ENSMUSG00000025372 Baiap2 027 chr11 119867673 119868096 + 0.5 7.7 3.5E–13 1.3E–08
ENSMUSG00000034083 C130022K22Rik 009 chr6 91835401 91838063 + 1.0 7.8 4.5E–13 1.5E–08
ENSMUSG00000008153 Clstn3 004 chr6 124383426 124383521 1.2 7.4 1.5E–12 4.5E–08
ENSMUSG00000043872 Zmym1 001 chr4 126724338 126724885 1.1 7.3 6.6E–12 1.8E–07
ENSMUSG00000005089 Slc1a2 036 chr2 102621901 102630941 + −0.3 −6.7 8.4E–11 2.0E–06
ENSMUSG00000020287 Mpg 010 chr11 32130054 32131244 + −0.6 −7.1 1.5E–10 3.3E–06
ENSMUSG00000024576 Csnk1a1 028 chr18 61745286 61746152 + 0.6 6.5 4.2E–10 8.5E–06
ENSMUSG00000063077 Kif1b 001 chr4 148550428 148552126 −0.2 −6.3 7.6E–10 1.5E–05
ENSMUSG00000035206 3110056O03Rik 016 chr10 80329406 80330144 + 0.4 6.5 9.0E–10 1.6E–05
ENSMUSG00000059495 Arhgef12 002 chr9 42771926 42776264 −0.3 −6.3 1.0E–09 1.7E–05
ENSMUSG00000022710 Usp7 020 chr16 8697013 8697568 0.8 6.2 1.4E–09 2.1E–05
ENSMUSG00000025372 Baiap2 026 chr11 119864352 119864399 + 0.6 6.3 1.6E–09 2.4E–05
ENSMUSG00000024576 Csnk1a1 027 chr18 61744853 61745285 + 0.6 6.2 2.3E–09 3.2E–05
ENSMUSG00000063077 Kif1b 002 chr4 148552127 148552971 −0.3 −6.0 4.0E–09 5.3E–05
ENSMUSG00000041879 Ipo9 036 chr1 137302594 137303043 −0.7 −5.9 5.5E–09 7.0E–05
ENSMUSG00000057421 Las1l 015 chrX 93143543 93144773 −0.9 −6.0 6.0E–09 7.3E–05
ENSMUSG00000034656 Cacna1a 068 chr8 87163334 87163334 + 1.4 5.9 7.4E–09 8.6E–05
ENSMUSG00000031878 Nae1 015 chr8 107042164 107043101 1.1 5.9 8.2E–09 9.1E–05
ENSMUSG00000023033 Scn8a 030 chr15 100869972 100876360 + −0.2 −5.9 9.3E–09 1.0E–04
ENSMUSG00000075876 + ENSMUSG00000064791
 + ENSMUSG00000075924
 + ENSMUSG00000015656
Snord14c/
Snord14e/
Snord14d/Hspa8
038 chr9 40612831 40612920 + 1.4 5.9 9.7E–09 1.0E–04
ENSMUSG00000027523 Gnas 027 chr2 174155788 174155935 + 1.0 5.8 1.0E–08 1.0E–04
ENSMUSG00000071984 Fndc1 001 chr17 7931434 7932195 0.4 5.8 2.0E–08 1.9E–04
ENSMUSG00000038383 Pigu 004 chr2 155104386 155108131 0.5 5.8 2.6E–08 2.4E–04
ENSMUSG00000028053 Ash1l 002 chr3 88785155 88789712 + 0.4 5.7 3.0E–08 2.6E–04
ENSMUSG00000028826 Tmem57 002 chr4 134360480 134362431 −0.4 −5.7 3.9E–08 3.4E–04
ENSMUSG00000075876 + ENSMUSG00000064791
 + ENSMUSG00000075924
 + ENSMUSG00000015656
Snord14c/
Snord14e/
Snord14d/Hspa8
037 chr9 40612779 40612830 + 1.4 5.6 4.3E–08 3.6E–04
ENSMUSG00000024576 Csnk1a1 025 chr18 61742498 61744058 + 0.5 5.6 4.5E–08 3.7E–04
ENSMUSG00000023952 Gtpbp2 035 chr17 46303816 46303936 + 0.9 5.6 4.6E–08 3.7E–04
ENSMUSG00000007617 Homer1 016 chr13 94136198 94136232 + 2.1 5.6 5.4E–08 4.1E–04
ENSMUSG00000027429 Sec23b 030 chr2 144405140 144406851 + 0.9 5.5 6.4E–08 4.8E–04
ENSMUSG00000036052 Dnajb5 011 chr4 42963816 42965965 + 0.4 5.7 6.8E–08 4.9E–04
ENSMUSG00000013033 Lphn1 001 chr8 86424004 86424471 + 0.7 5.5 8.0E–08 5.6E–04
ENSMUSG00000035640 Dos 014 chr10 79598293 79598333 1.6 5.5 8.3E–08 5.7E–04
ENSMUSG00000028488 Sh3gl2 016 chr4 85033579 85035284 + 0.2 5.5 1.1E–07 7.5E–04
ENSMUSG00000027569 1600027N09Rik 010 chr2 180318228 180319110 + 0.4 5.5 1.5E–07 9.7E–04
ENSMUSG00000008153 Clstn3 005 chr6 124386790 124386835 1.4 5.3 2.1E–07 1.3E–03
ENSMUSG00000014873 Surf2 009 chr2 26773052 26774384 + 0.3 5.4 2.3E–07 1.5E–03
ENSMUSG00000063160 + ENSMUSG00000003762 Numbl/Adck4 037 chr7 28047272 28049894 + 0.4 5.2 2.9E–07 1.8E–03
ENSMUSG00000024777 Ppp2r5b 006 chr19 6230276 6230385 0.5 5.3 3.1E–07 1.8E–03
ENSMUSG00000031167 Rbm3 022 chrX 7721600 7721698 −0.6 −5.2 3.1E–07 1.8E–03
ENSMUSG00000053580 Tanc2 043 chr11 105786047 105790613 + −0.3 −5.2 3.3E–07 1.9E–03
ENSMUSG00000028161 Ppp3ca 030 chr3 136598842 136598864 + 0.7 5.2 3.5E–07 1.9E–03
ENSMUSG00000029765 Plxna4 001 chr6 32094565 32095925 −0.3 −5.2 3.7E–07 2.0E–03
ENSMUSG00000075003 + ENSMUSG00000037876 Jmjd1c/Jmjd1c 041 chr10 66707622 66708166 + 0.7 5.1 4.2E–07 2.3E–03
ENSMUSG00000027799 Nbea 062 chr3 55986894 55987623 0.6 5.1 4.4E–07 2.3E–03
ENSMUSG00000023952 Gtpbp2 031 chr17 46302947 46303259 + 0.4 5.1 5.3E–07 2.7E–03
ENSMUSG00000042605 Atxn2 051 chr5 122261639 122261939 + 0.6 5.1 5.6E–07 2.8E–03
ENSMUSG00000003269 Cyth2 023 chr7 53068527 53069248 0.4 5.1 5.9E–07 2.9E–03
ENSMUSG00000022451 Twf1 001 chr15 94408382 94410096 0.2 5.2 6.1E–07 3.0E–03
ENSMUSG00000072647 + ENSMUSG00000029454 Adam1a/
Mapkapk5
002 chr5 121968622 121969392 0.4 5.1 6.9E–07 3.3E–03
ENSMUSG00000038664 Herc1 095 chr9 66348328 66348982 + −0.6 −5.0 7.3E–07 3.4E–03
ENSMUSG00000030082 Sec61a1 014 chr6 88463896 88464200 0.8 5.1 7.6E–07 3.5E–03
ENSMUSG00000032855 Pkd1 017 chr17 24709563 24711715 + 0.5 5.0 8.4E–07 3.8E–03
ENSMUSG00000040929 Rfx3 001 chr19 27836211 27840930 −0.3 −5.0 9.7E–07 4.3E–03
ENSMUSG00000038762 Abcf1 037 chr17 36105913 36106178 1.4 4.9 1.3E–06 5.6E–03
ENSMUSG00000023952 Gtpbp2 044 chr17 46304840 46304970 + 0.4 4.9 1.3E–06 5.7E–03
ENSMUSG00000006676 Usp19 027 chr9 108403525 108404028 + 0.2 5.0 1.4E–06 5.8E–03
ENSMUSG00000078789 + ENSMUSG00000038268 Dph1/Ovca2 001 chr11 74989444 74991144 0.3 5.0 1.4E–06 5.8E–03
ENSMUSG00000040896 Kcnd3 009 chr3 105468465 105469879 + 1.0 5.0 1.4E–06 5.9E–03
ENSMUSG00000030207 8430419L09Rik 017 chr6 135182873 135183273 + −0.5 −4.9 1.7E–06 6.9E–03
ENSMUSG00000029587 Zfp12 004 chr5 143997458 143997932 + 1.0 5.0 1.7E–06 6.9E–03
ENSMUSG00000021097 Clmn 001 chr12 106001324 106010173 −0.2 −5.0 1.8E–06 7.0E–03
ENSMUSG00000015536 Mocs2 015 chr13 115615731 115616365 + 0.6 4.9 2.0E–06 7.8E–03
ENSMUSG00000045482 Trrap 027 chr5 145557830 145558030 + 0.9 4.8 2.0E–06 7.8E–03
ENSMUSG00000085832 D430036J16Rik 004 chr9 81530442 81530544 + −1.8 −5.1 2.1E–06 7.8E–03
ENSMUSG00000020612 Prkar1a 011 chr11 109522664 109523067 + 0.4 4.9 2.2E–06 8.2E–03
ENSMUSG00000053470 Kdm3a 017 chr6 71558999 71559041 2.5 4.8 2.6E–06 9.3E–03
ENSMUSG00000042042 Csgalnact2 007 chr6 118074432 118076139 1.2 4.9 2.8E–06 1.0E–02
ENSMUSG00000004070 Hmox2 004 chr16 4756845 4756902 + 1.1 4.9 2.8E–06 1.0E–02
ENSMUSG00000040479 Dgkz 011 chr2 91774090 91774212 0.5 4.7 3.1E–06 1.1E–02
ENSMUSG00000021327 Zkscan3 009 chr13 21481162 21485100 0.3 4.8 3.1E–06 1.1E–02
ENSMUSG00000055491 Pprc1 039 chr19 46146825 46147038 + 0.9 4.7 3.4E–06 1.2E–02
ENSMUSG00000074247 Dda1 013 chr8 73996515 73996681 + 0.7 4.8 3.6E–06 1.2E–02
ENSMUSG00000020654 Adcy3 032 chr12 4210892 4211481 + 0.5 4.7 3.6E–06 1.2E–02
ENSMUSG00000022565 + ENSMUSG00000063268 Plec/Parp10 003 chr15 76001406 6005809 −0.2 −4.7 3.7E–06 1.2E–02
ENSMUSG00000062296 Trank1 011 chr9 111267179 111270052 + 0.4 4.8 3.9E–06 1.3E–02
ENSMUSG00000057897 Camk2b 049 chr11 5965662 5965745 1.3 4.7 4.0E–06 1.3E–02
ENSMUSG00000050357 Rltpr 040 chr8 108219675 108220760 + 0.4 4.7 4.2E–06 1.3E–02
ENSMUSG00000000416 Cttnbp2 029 chr6 18381940 18383819 0.4 4.7 4.2E–06 1.3E–02
ENSMUSG00000028161 Ppp3ca 029 chr3 136598744 136598841 + 0.6 4.7 4.4E–06 1.4E–02
ENSMUSG00000024826 Dpf2 011 chr19 5902769 5903332 0.4 4.7 4.4E–06 1.4E–02
ENSMUSG00000034171 Faah 014 chr4 115672694 115673391 0.3 4.7 4.6E–06 1.4E–02
ENSMUSG00000015869 Prpsap1 009 chr11 116338662 116339053 0.5 4.7 4.8E–06 1.4E–02
ENSMUSG00000053483 Usp21 037 chr1 173215746 173216480 0.4 4.6 4.8E–06 1.4E–02
ENSMUSG00000004947 Dtx2 015 chr5 136495428 136497624 + 0.9 4.7 5.0E–06 1.5E–02
ENSMUSG00000025155 Dus1l 009 chr11 120651195 120651761 0.4 4.6 5.1E–06 1.5E–02
ENSMUSG00000006920 Ezh1 022 chr11 101068968 101069435 1.2 4.6 5.3E–06 1.5E–02
ENSMUSG00000004110 Cacna1e 001 chr1 156239649 156246065 −0.3 −4.6 5.5E–06 1.5E–02
ENSMUSG00000019254 Ppp1r12c 052 chr7 4453132 4453266 0.9 4.6 5.6E–06 1.5E–02
ENSMUSG00000068221 + ENSMUSG00000022436 Pdxp/Sh3bp1 031 chr15 78744349 78744961 + 0.3 4.6 5.6E–06 1.5E–02
ENSMUSG00000063077 Kif1b 004 chr4 148552981 148554344 −0.2 −4.6 5.6E–06 1.5E–02
ENSMUSG00000074247 Dda1 012 chr8 73996275 73996514 + 0.7 4.7 5.7E–06 1.5E–02
ENSMUSG00000024012 Mtch1 030 chr17 29484705 29484849 0.7 4.6 5.7E–06 1.5E–02
ENSMUSG00000053141 Ptprt 001 chr2 161347726 161352092 −0.3 −4.6 5.7E–06 1.5E–02
ENSMUSG00000039838 Slc45a1 002 chr4 150004156 150005026 0.4 4.8 5.7E–06 1.5E–02
ENSMUSG00000000441 Raf1 007 chr6 115570346 115571833 0.2 4.6 5.7E–06 1.5E–02
ENSMUSG00000054263 Lifr 025 chr15 7141744 7147489 + −0.3 −4.6 5.9E–06 1.5E–02
ENSMUSG00000063160 + ENSMUSG00000003762 Numbl/Adck4 035 chr7 28046397 28047186 + 0.5 4.6 6.1E–06 1.6E–02
ENSMUSG00000038406 Scaf1 010 chr7 52266722 52267492 0.7 4.6 6.5E–06 1.6E–02
ENSMUSG00000020978 Klhdc2 002 chr12 70397709 70397741 + 0.8 4.6 6.8E–06 1.7E–02
ENSMUSG00000019877 Serinc1 001 chr10 57235580 57237098 0.1 4.6 7.3E–06 1.8E–02
ENSMUSG00000069045 Ddx3y 001 chrY 597158 599810 0.3 4.6 7.4E–06 1.8E–02
ENSMUSG00000027893 Ahcyl1 007 chr3 107468310 107468433 0.8 4.6 7.4E–06 1.8E–02
ENSMUSG00000021830 Txndc16 017 chr14 45787030 45787898 1.7 4.5 7.5E–06 1.8E–02
ENSMUSG00000042726 Trafd1 010 chr5 121825256 121825804 −0.4 −4.5 8.4E–06 2.0E–02
ENSMUSG00000052593 Adam17 007 chr12 21333841 21333900 2.5 4.5 9.0E–06 2.1E–02
ENSMUSG00000022199 Slc22a17 005 chr14 55526468 55526722 0.4 4.6 9.2E–06 2.2E–02
ENSMUSG00000060216 Arrb2 011 chr11 70249075 70249498 + 0.7 4.5 9.4E–06 2.2E–02
ENSMUSG00000027185 Nat10 027 chr2 103574683 103575022 0.8 4.5 9.4E–06 2.2E–02
ENSMUSG00000002280 Narfl 018 chr17 25917898 25918137 + −0.5 −4.5 9.4E–06 2.2E–02
ENSMUSG00000032540 Abhd5 002 chr9 122260848 122260957 + −0.9 −4.7 9.8E–06 2.2E–02
ENSMUSG00000047342 Zfp286 003 chr11 62591891 62593106 0.4 4.5 9.9E–06 2.2E–02
ENSMUSG00000038324 Trpc4ap 013 chr2 155464719 155465208 0.5 4.5 1.0E–05 2.3E–02
ENSMUSG00000063659 Zfp238 002 chr1 179375952 179377219 + 0.4 5.1 1.0E–05 2.3E–02
ENSMUSG00000034739 + ENSMUSG00000079592 Mfrp/C1qtnf5 030 chr9 43915789 43916054 + −1.1 −4.5 1.0E–05 2.3E–02
ENSMUSG00000023087 Ccrn4l 003 chr3 51044128 51051726 + 0.5 4.7 1.1E–05 2.3E–02
ENSMUSG00000029765 Plxna4 002 chr6 32095926 32100584 −0.2 −4.5 1.1E–05 2.4E–02
ENSMUSG00000040225 Prrc2c 029 chr1 164640414 164640960 0.5 4.5 1.1E–05 2.4E–02
ENSMUSG00000034675 Dbn1 011 chr13 55577678 55577992 0.3 4.5 1.1E–05 2.4E–02
ENSMUSG00000028782 Bai2 046 chr4 129698499 129698806 + 0.3 4.4 1.3E–05 2.7E–02
ENSMUSG00000039953 Clstn1 001 chr4 148960577 148960746 + 1.2 4.5 1.3E–05 2.7E–02
ENSMUSG00000061751 Kalrn 052 chr16 34152121 34152180 0.4 4.4 1.4E–05 2.9E–02
ENSMUSG00000033059 Pygb 019 chr2 150649343 150649711 + 0.9 4.4 1.4E–05 2.9E–02
ENSMUSG00000035847 Ids 002 chrX 67596247 67599848 0.2 4.5 1.4E–05 2.9E–02
ENSMUSG00000030603 Psmc4 021 chr7 28834222 28834719 0.5 4.5 1.4E–05 2.9E–02
ENSMUSG00000021196 Pfkp 021 chr13 6594283 6595229 0.6 4.4 1.5E–05 3.0E–02
ENSMUSG00000040479 Dgkz 010 chr2 91774000 91774089 0.5 4.4 1.5E–05 3.1E–02
ENSMUSG00000029713 + ENSMUSG00000029711 Gnb2/Epo 041 chr5 137972128 137972202 0.4 4.4 1.6E–05 3.1E–02
ENSMUSG00000048148 Nwd1 031 chr8 75235492 75238645 + −0.3 −4.4 1.6E–05 3.1E–02
ENSMUSG00000022514 Il1rap 028 chr16 26728315 26730203 + −0.3 −4.4 1.7E–05 3.3E–02
ENSMUSG00000044783 Hjurp 023 chr1 90171673 90173793 0.5 4.4 1.7E–05 3.3E–02
ENSMUSG00000045482 Trrap 013 chr5 145545127 145545215 + 1.3 4.3 1.7E–05 3.3E–02
ENSMUSG00000005378 Wbscr22 030 chr5 135537215 135537339 0.9 4.4 1.7E–05 3.3E–02
ENSMUSG00000084896 + ENSMUSG00000020883 Gm11632/Fbxl20 014 chr11 97956818 97958242 −0.6 −4.4 1.7E–05 3.3E–02
ENSMUSG00000052423 B4galt3 014 chr1 173201505 173201770 + −0.8 −4.4 1.8E–05 3.4E–02
ENSMUSG00000031878 Nae1 009 chr8 107040890 107040949 1.0 4.3 1.8E–05 3.4E–02
ENSMUSG00000037996 Slc24a2 002 chr4 86629033 86637076 −0.2 −4.4 1.9E–05 3.5E–02
ENSMUSG00000028703 Lrrc41 005 chr4 115751487 115751587 + 1.1 4.4 1.9E–05 3.5E–02
ENSMUSG00000060206 Zfp462 005 chr4 55021187 55024237 + 0.4 4.4 1.9E–05 3.6E–02
ENSMUSG00000037017 Zscan21 015 chr5 138575442 138575442 + 2.3 4.4 2.0E–05 3.6E–02
ENSMUSG00000020716 Nf1 029 chr11 79258526 79258648 + 1.2 4.3 2.0E–05 3.6E–02
ENSMUSG00000031389 + ENSMUSG00000031388
 + ENSMUSG00000031391
Arhgap4/Naa10/
L1cam
132 chrX 71163408 71164840 0.4 4.3 2.1E–05 3.7E–02
ENSMUSG00000032589 Bsn 010 chr9 108012745 108018857 0.4 4.4 2.1E–05 3.7E–02
ENSMUSG00000091471 + ENSMUSG00000025204
 + ENSMUSG00000051984
Gm20538/Ndufb8/
Sec31b
015 chr19 44599966 44600144 −2.8 −4.3 2.1E–05 3.7E–02
ENSMUSG00000020894 Vamp2 013 chr11 68903553 68903678 + 0.5 4.4 2.1E–05 3.8E–02
ENSMUSG00000001763 Tspan33 001 chr6 29644222 29644233 + 1.9 4.4 2.3E–05 4.0E–02
ENSMUSG00000026596 Abl2 018 chr1 158572848 158579699 + −0.3 −4.4 2.3E–05 4.0E–02
ENSMUSG00000050875 A730017C20Rik 012 chr18 59232072 59234318 + −0.6 −4.4 2.3E–05 4.0E–02
ENSMUSG00000030082 Sec61a1 012 chr6 88462600 88463804 0.5 4.3 2.4E–05 4.2E–02
ENSMUSG00000040447 Spns2 007 chr11 72266618 72267055 0.5 4.3 2.4E–05 4.2E–02
ENSMUSG00000048078 Odz4 055 chr7 104057065 104059603 + −0.2 −4.3 2.5E–05 4.2E–02
ENSMUSG00000057236 Rbbp4 016 chr4 129002068 129005831 0.4 4.3 2.5E–05 4.2E–02
ENSMUSG00000044308 Ubr3 054 chr2 69858185 69858507 + −0.5 −4.3 2.5E–05 4.2E–02
ENSMUSG00000040209 Zfp704 001 chr3 9427011 9438898 −0.4 −4.4 2.6E–05 4.3E–02
ENSMUSG00000023026 Dip2b 023 chr15 100011740 100011867 + 0.6 4.2 2.8E–05 4.6E–02
ENSMUSG00000056602 Fry 027 chr5 151198318 151198442 + 0.5 4.2 2.8E–05 4.7E–02
ENSMUSG00000051306 Usp42 023 chr5 144483224 144483814 1.8 4.3 2.9E–05 4.7E–02
ENSMUSG00000035027 Map2k2 009 chr10 80581357 80581721 + −0.9 −4.3 2.9E–05 4.7E–02
ENSMUSG00000007850 Hnrnph1 046 chr11 50199824 50199891 + 0.6 4.2 2.9E–05 4.7E–02
ENSMUSG00000029578 Wipi2 016 chr5 143140444 143140598 + 0.7 4.3 3.0E–05 4.8E–02
ENSMUSG00000027797 Dclk1 009 chr3 55270495 55275239 + 0.3 4.3 3.0E–05 4.8E–02
ENSMUSG00000028943 Espn 001 chr4 151494440 151494444 0.8 4.2 3.0E–05 4.8E–02
ENSMUSG00000042625 Safb2 026 chr17 56708446 56708857 0.4 4.2 3.1E–05 4.8E–02
ENSMUSG00000058624 Gda 010 chr19 21493215 21493863 1.6 4.3 3.1E–05 4.9E–02

Table 2.

List of bins showing differential expression 30 min after memory retrieval. Each differential bin contains the chromosome, start position, and end position for easy reference.

GeneID Gene name Bin
#
Chr Start Stop Strand logFC t P value FDR
ENSMUSG00000029657 Hsph1 012 chr5 150423259 150426039 1.2 12.8 1.7E–29 4.7E–24
ENSMUSG00000031167 Rbm3 002 chrX 7716104 7717909 1.2 11.8 3.5E–26 4.6E–21
ENSMUSG00000007617 Homer1 018 chr13 94136356 94137083 + 1.5 10.5 1.6E–21 1.4E–16
ENSMUSG00000039801 2410089E03Rik 053 chr15 8201065 8202148 + −1.0 −9.2 1.1E–18 7.3E–14
ENSMUSG00000041879 Ipo9 036 chr1 137302594 137303043 −1.1 −9.0 6.4E–18 3.4E–13
ENSMUSG00000034083 C130022K22Rik 009 chr6 91835401 91838063 + 1.1 9.1 1.2E–16 5.5E–12
ENSMUSG00000027523 Gnas 027 chr2 174155788 174155935 + 1.3 8.2 3.8E–15 1.4E–10
ENSMUSG00000034656 Cacna1a 068 chr8 87163334 87163334 + 1.7 7.9 1.2E–14 4.0E–10
ENSMUSG00000057897 Camk2b 049 chr11 5965662 5965745 2.2 7.6 1.9E–13 5.6E–09
ENSMUSG00000035206 3110056O03Rik 016 chr10 80329406 80330144 + 0.5 8.0 2.4E–13 6.5E–09
ENSMUSG00000035640 Dos 014 chr10 79598293 79598333 2.1 7.6 2.8E–13 6.8E–09
ENSMUSG00000039953 Clstn1 001 chr4 148960577 148960746 + 1.9 7.5 1.6E–12 3.6E–08
ENSMUSG00000008153 Clstn3 004 chr6 124383426 124383521 1.1 7.4 2.0E–12 4.0E–08
ENSMUSG00000075876 + ENSMUSG00000064791
 + ENSMUSG00000075924
 + ENSMUSG00000015656
Snord14c/
Snord14e/
Snord14d/Hspa8
038 chr9 40612831 40612920 + 1.6 7.1 6.7E–12 1.3E–07
ENSMUSG00000031167 Rbm3 022 chrX 7721600 7721698 −0.8 −7.1 8.5E–12 1.5E–07
ENSMUSG00000057421 Las1l 015 chrX 93143543 93144773 −1.0 −7.1 1.1E–11 1.8E–07
ENSMUSG00000036052 Dnajb5 011 chr4 42963816 42965965 + 0.4 7.3 1.1E–11 1.8E–07
ENSMUSG00000031878 Nae1 015 chr8 107042164 107043101 1.2 6.9 1.7E–11 2.5E–07
ENSMUSG00000022199 Slc22a17 005 chr14 55526468 55526722 0.5 7.1 4.1E–11 5.8E–07
ENSMUSG00000075876 + ENSMUSG00000064791
 + ENSMUSG00000075924
 + ENSMUSG00000015656
Snord14c/
Snord14e/
Snord14d/Hspa8
037 chr9 40612779 40612830 + 1.4 6.7 9.5E–11 1.3E–06
ENSMUSG00000075003 + ENSMUSG00000037876 Jmjd1c/Jmjd1c 041 chr10 66707622 66708166 + 0.9 6.6 1.1E–10 1.3E–06
ENSMUSG00000031167 Rbm3 003 chrX 7717910 7718334 1.1 6.7 1.5E–10 1.9E–06
ENSMUSG00000023965 Fbxl17 017 chr17 63848374 63849366 0.5 6.8 1.9E–10 2.2E–06
ENSMUSG00000028826 Tmem57 002 chr4 134360480 134362431 −0.5 −6.6 3.8E–10 4.2E–06
ENSMUSG00000038664 Herc1 093 chr9 66346564 66348060 + −0.7 −6.3 4.3E–10 4.6E–06
ENSMUSG00000019254 Ppp1r12c 052 chr7 4453132 4453266 1.1 6.4 5.3E–10 5.4E–06
ENSMUSG00000028797 + ENSMUSG00000086797 2510006D16Rik/
Gm12965
034 chr4 129284424 129284574 + 1.1 6.3 7.6E–10 7.5E–06
ENSMUSG00000028782 Bai2 001 chr4 129662114 129662407 + 0.6 6.3 8.8E–10 8.4E–06
ENSMUSG00000024012 Mtch1 030 chr17 29484705 29484849 0.8 6.3 1.2E–09 1.1E–05
ENSMUSG00000024576 Csnk1a1 028 chr18 61745286 61746152 + 0.5 6.3 1.4E–09 1.2E–05
ENSMUSG00000027569 1600027N09Rik 010 chr2 180318228 180319110 + 0.5 6.5 1.4E–09 1.2E–05
ENSMUSG00000031660 Brd7 032 chr8 90885914 90886093 1.1 6.3 1.5E–09 1.3E–05
ENSMUSG00000046667 Rbm12b 012 chr4 12072176 12073847 + 0.8 6.5 1.6E–09 1.3E–05
ENSMUSG00000024392 Bag6 032 chr17 35277897 35278103 + 0.8 6.1 2.0E–09 1.5E–05
ENSMUSG00000052423 B4galt3 014 chr1 173201505 173201770 + −1.0 −6.2 2.0E–09 1.5E–05
ENSMUSG00000019854 Reps1 001 chr10 17775667 17775711 + 1.1 6.1 2.5E–09 1.8E–05
ENSMUSG00000061887 Ssbp3 003 chr4 106584116 106584137 + 1.8 6.1 2.7E–09 2.0E–05
ENSMUSG00000074247 Dda1 012 chr8 73996275 73996514 + 0.9 6.3 2.9E–09 2.0E–05
ENSMUSG00000056413 Adap1 022 chr5 139801419 139801576 1.8 6.2 3.2E–09 2.2E–05
ENSMUSG00000026090 2010300C02Rik 018 chr1 37776641 37776930 1.5 6.3 3.4E–09 2.3E–05
ENSMUSG00000007617 Homer1 017 chr13 94136233 94136355 + 1.4 6.0 5.7E–09 3.7E–05
ENSMUSG00000037266 D4Wsu53e 022 chr4 134481737 134481940 + −0.4 −6.0 5.9E–09 3.8E–05
ENSMUSG00000037266 D4Wsu53e 024 chr4 134482066 134482649 + −0.4 −6.0 6.1E–09 3.8E–05
ENSMUSG00000037098 Rab11fip3 027 chr17 26206181 26206354 0.9 6.0 6.7E–09 4.1E–05
ENSMUSG00000043872 Zmym1 001 chr4 126724338 126724885 0.9 6.1 7.1E–09 4.2E–05
ENSMUSG00000024826 Dpf2 011 chr19 5902769 5903332 0.5 6.0 8.4E–09 4.9E–05
ENSMUSG00000025372 Baiap2 027 chr11 119867673 119868096 + 0.3 6.0 8.6E–09 4.9E–05
ENSMUSG00000037266 D4Wsu53e 021 chr4 134481701 134481736 + −0.5 −5.9 1.1E–08 6.3E–05
ENSMUSG00000013033 Lphn1 001 chr8 86424004 86424471 + 0.8 5.8 1.3E–08 7.3E–05
ENSMUSG00000040479 Dgkz 011 chr2 91774090 91774212 0.6 5.8 1.4E–08 7.5E–05
ENSMUSG00000027893 Ahcyl1 007 chr3 107468310 107468433 1.0 5.8 1.7E–08 9.0E–05
ENSMUSG00000001729 Akt1 034 chr12 113912418 113912487 1.4 5.8 1.8E–08 9.3E–05
ENSMUSG00000037266 D4Wsu53e 020 chr4 134481692 134481700 + −0.5 −5.8 2.0E–08 1.0E–04
ENSMUSG00000031167 Rbm3 021 chrX 7721572 7721599 −0.8 −5.8 2.1E–08 1.0E–04
ENSMUSG00000055491 Pprc1 039 chr19 46146825 46147038 + 1.0 5.7 2.2E–08 1.1E–04
ENSMUSG00000021327 Zkscan3 009 chr13 21481162 21485100 0.4 5.8 2.2E–08 1.1E–04
ENSMUSG00000021262 Evl 001 chr12 109792930 109793423 + 0.5 5.9 2.3E–08 1.1E–04
ENSMUSG00000015869 Prpsap1 009 chr11 116338662 116339053 0.6 5.8 2.5E–08 1.1E–04
ENSMUSG00000014873 Surf2 009 chr2 26773052 26774384 + 0.3 5.8 2.5E–08 1.1E–04
ENSMUSG00000038383 Pigu 004 chr2 155104386 155108131 0.4 5.8 2.8E–08 1.3E–04
ENSMUSG00000022514 Il1rap 028 chr16 26728315 26730203 + −0.4 −5.7 3.0E–08 1.3E–04
ENSMUSG00000004929 Thop1 013 chr10 80541613 80542202 + 0.6 5.8 3.2E–08 1.4E–04
ENSMUSG00000021040 1810035L17Rik 009 chr12 88790351 88790753 + 0.6 5.9 3.3E–08 1.4E–04
ENSMUSG00000023353 Agap3 002 chr5 23958025 23958073 + 1.8 5.7 3.3E–08 1.4E–04
ENSMUSG00000050875 A730017C20Rik 012 chr18 59232072 59234318 + −0.7 −5.8 3.4E–08 1.4E–04
ENSMUSG00000001729 Akt1 033 chr12 113912211 113912417 0.7 5.7 3.6E–08 1.4E–04
ENSMUSG00000093290 + ENSMUSG00000035632 Mir3572/Cnot3 026 chr7 3610347 3610426 + 0.6 5.7 3.7E–08 1.5E–04
ENSMUSG00000009073 Nf2 014 chr11 4684567 4685110 0.9 5.6 3.8E–08 1.5E–04
ENSMUSG00000084708 + ENSMUSG00000065862
 + ENSMUSG00000059796
//Eif4a1 040 chr11 69485107 69485232 0.8 5.6 4.0E–08 1.5E–04
ENSMUSG00000037266 D4Wsu53e 019 chr4 134481361 134481691 + −0.4 −5.7 4.0E–08 1.5E–04
ENSMUSG00000015536 Mocs2 015 chr13 115615731 115616365 + 0.6 5.7 4.7E–08 1.8E–04
ENSMUSG00000034675 Dbn1 011 chr13 55577678 55577992 0.3 5.6 4.8E–08 1.8E–04
ENSMUSG00000003269 Cyth2 023 chr7 53068527 53069248 0.4 5.6 5.0E–08 1.8E–04
ENSMUSG00000031065 Cdk16 027 chrX 20274091 20274245 + 0.5 5.6 5.6E–08 2.0E–04
ENSMUSG00000025499 Hras1 021 chr7 148379860 148379893 3.4 5.6 5.9E–08 2.1E–04
ENSMUSG00000080683 + ENSMUSG00000087376
 + ENSMUSG00000080352
 + ENSMUSG00000045411
/Gm15517//
2410002F23Rik
030 chr7 51503682 51504911 + 0.4 5.5 7.4E–08 2.6E–04
ENSMUSG00000009549 Srp14 005 chr2 118304301 118304567 0.8 5.7 8.4E–08 2.9E–04
ENSMUSG00000031392 + ENSMUSG00000076127
 + ENSMUSG00000092907
Irak1/Mir718/
Mir5132
056 chrX 71269148 71269165 1.7 5.4 8.6E–08 2.9E–04
ENSMUSG00000078789 + ENSMUSG00000038268 Dph1/Ovca2 001 chr11 74989444 74991144 0.3 5.5 1.1E–07 3.6E–04
ENSMUSG00000031660 Brd7 031 chr8 90885805 90885913 0.7 5.4 1.2E–07 3.9E–04
ENSMUSG00000020923 Ubtf 012 chr11 102169844 102170012 1.3 5.4 1.2E–07 4.1E–04
ENSMUSG00000032047 Acat1 004 chr9 53391700 53391862 0.7 5.6 1.3E–07 4.2E–04
ENSMUSG00000003345 Csnk1g2 001 chr10 80085525 80085695 + 0.6 5.5 1.3E–07 4.3E–04
ENSMUSG00000072770 + ENSMUSG00000030330 Acrbp/Ing4 042 chr6 125003508 125003819 + 0.5 5.4 1.4E–07 4.4E–04
ENSMUSG00000028796 Phc2 020 chr4 128404926 128404953 + 2.3 5.4 1.4E–07 4.4E–04
ENSMUSG00000002393 Nr2f6 023 chr8 73905806 73905859 1.7 5.5 1.5E–07 4.6E–04
ENSMUSG00000037266 D4Wsu53e 023 chr4 134481941 134482065 + −0.4 −5.4 1.5E–07 4.6E–04
ENSMUSG00000006575 Rundc3a 019 chr11 102261951 102261974 + 0.4 5.4 1.6E–07 4.9E–04
ENSMUSG00000092679 + ENSMUSG00000026872 Mir5129/Zeb2 001 chr2 44839154 44842640 −0.2 −5.4 1.8E–07 5.3E–04
ENSMUSG00000001211 Agpat3 029 chr10 77814958 77815187 0.5 5.4 1.8E–07 5.4E–04
ENSMUSG00000016933 Plcg1 004 chr2 160557454 160557468 + 0.9 5.3 2.0E–07 5.9E–04
ENSMUSG00000042625 Safb2 026 chr17 56708446 56708857 0.4 5.3 2.1E–07 6.2E–04
ENSMUSG00000027546 Atp9a 040 chr2 168567301 168567462 0.7 5.3 2.6E–07 7.4E–04
ENSMUSG00000027367 Stard7 014 chr2 127115811 127116507 + 0.5 5.3 2.8E–07 7.9E–04
ENSMUSG00000038644 Pold1 018 chr7 51789560 51789754 1.7 5.2 2.8E–07 7.9E–04
ENSMUSG00000002812 Flii 019 chr11 60532729 60533194 0.5 5.2 3.1E–07 8.5E–04
ENSMUSG00000042605 Atxn2 051 chr5 122261639 122261939 + 0.6 5.2 3.1E–07 8.6E–04
ENSMUSG00000040479 Dgkz 054 chr2 91803443 91803814 0.3 5.2 3.2E–07 8.8E–04
ENSMUSG00000059995 Atxn7l3 020 chr11 102157717 102157943 0.7 5.3 3.3E–07 8.9E–04
ENSMUSG00000092870 + ENSMUSG00000020349 Mir3061/Ppp2ca 001 chr11 51912183 51912652 + 0.9 5.5 3.3E–07 8.9E–04
ENSMUSG00000027303 Ptpra 001 chr2 130276014 130276279 + 0.6 5.3 3.5E–07 9.2E–04
ENSMUSG00000023353 Agap3 001 chr5 23957995 23958024 + 1.6 5.3 3.6E–07 9.4E–04
ENSMUSG00000028484 Psip1 026 chr4 83132179 83132357 0.5 5.2 3.9E–07 1.0E–03
ENSMUSG00000033423 Eri3 004 chr4 117223367 117225214 + −0.5 −5.2 4.3E–07 1.1E–03
ENSMUSG00000026277 Stk25 009 chr1 95522184 95522357 0.3 5.2 4.7E–07 1.2E–03
ENSMUSG00000037907 Ankrd13b 036 chr11 77303169 77303180 2.3 5.1 4.8E–07 1.2E–03
ENSMUSG00000038664 Herc1 095 chr9 66348328 66348982 + −0.5 −5.0 5.6E–07 1.4E–03
ENSMUSG00000034254 Agpat1 012 chr17 34747951 34748122 + 0.4 5.1 5.8E–07 1.4E–03
ENSMUSG00000040479 Dgkz 010 chr2 91774000 91774089 0.5 5.1 5.8E–07 1.4E–03
ENSMUSG00000024858 Adrbk1 046 chr19 4306215 4306222 1.6 5.1 5.9E–07 1.4E–03
ENSMUSG00000004929 Thop1 012 chr10 80541376 80541500 + 0.8 5.2 5.9E–07 1.4E–03
ENSMUSG00000084708 + ENSMUSG00000065862
 + ENSMUSG00000059796
//Eif4a1 037 chr11 69484479 69484603 0.5 5.1 6.1E–07 1.5E–03
ENSMUSG00000038324 Trpc4ap 013 chr2 155464719 155465208 0.5 5.1 6.6E–07 1.6E–03
ENSMUSG00000038546 Ranbp9 018 chr13 43576298 43576342 1.6 5.2 7.1E–07 1.7E–03
ENSMUSG00000025499 Hras1 020 chr7 148379782 148379859 1.0 5.1 7.3E–07 1.7E–03
ENSMUSG00000034730 + ENSMUSG00000093340 Bai1/ 020 chr15 74394251 74394282 + 0.8 5.0 7.6E–07 1.7E–03
ENSMUSG00000068267 + ENSMUSG00000027329 Cenpb/Spef1 018 chr2 131005613 131005803 0.9 5.1 7.6E–07 1.7E–03
ENSMUSG00000029571 Tmem106b 020 chr6 13034188 13039269 + 0.2 5.1 7.7E–07 1.7E–03
ENSMUSG00000025964 Adam23 005 chr1 63492509 63492986 + 0.5 5.0 8.2E–07 1.8E–03
ENSMUSG00000025372 Baiap2 026 chr11 119864352 119864399 + 0.4 5.1 8.2E–07 1.8E–03
ENSMUSG00000020894 Vamp2 013 chr11 68903553 68903678 + 0.5 5.1 8.6E–07 1.9E–03
ENSMUSG00000031065 Cdk16 003 chrX 20265544 20265932 + 0.2 5.0 8.6E–07 1.9E–03
ENSMUSG00000036555 Iqce 001 chr5 141137781 141139458 0.5 5.0 9.1E–07 2.0E–03
ENSMUSG00000016503 Gtf3a 004 chr5 147761583 147762108 + 0.5 5.1 9.1E–07 2.0E–03
ENSMUSG00000001366 Fbxo9 006 chr9 77933505 77933713 0.7 5.1 9.3E–07 2.0E–03
ENSMUSG00000037098 Rab11fip3 026 chr17 26206123 26206180 0.7 5.0 9.3E–07 2.0E–03
ENSMUSG00000004071 5730403B10Rik 008 chr16 4769309 4769639 −0.4 −5.1 9.4E–07 2.0E–03
ENSMUSG00000020612 Prkar1a 011 chr11 109522664 109523067 + 0.3 5.1 9.8E–07 2.0E–03
ENSMUSG00000018861 Fdxr 018 chr11 115137497 115138038 0.6 5.1 9.9E–07 2.1E–03
ENSMUSG00000034730 + ENSMUSG00000093340 Bai1/ 021 chr15 74394283 74394341 + 0.7 5.0 1.0E–06 2.1E–03
ENSMUSG00000024533 Spire1 022 chr18 67770059 67770443 0.7 5.1 1.0E–06 2.1E–03
ENSMUSG00000024576 Csnk1a1 027 chr18 61744853 61745285 + 0.5 5.0 1.1E–06 2.1E–03
ENSMUSG00000028412 Slc44a1 001 chr4 53453285 53453542 + 0.9 5.0 1.1E–06 2.3E–03
ENSMUSG00000026074 Map4k4 001 chr1 39957758 39958024 + 0.7 5.0 1.1E–06 2.3E–03
ENSMUSG00000026977 March7 022 chr2 60083318 60085399 + 0.4 5.0 1.1E–06 2.3E–03
ENSMUSG00000002949 Timm44 019 chr8 4267402 4267540 −0.6 −5.0 1.2E–06 2.4E–03
ENSMUSG00000027634 Ndrg3 005 chr2 156756888 156756951 1.0 4.9 1.2E–06 2.4E–03
ENSMUSG00000074247 Dda1 011 chr8 73996146 73996274 + 0.8 5.1 1.3E–06 2.5E–03
ENSMUSG00000024392 Bag6 033 chr17 35278104 35278338 + 0.7 4.9 1.4E–06 2.7E–03
ENSMUSG00000057522 Spop 019 chr11 95346773 95346850 + −1.2 −5.0 1.4E–06 2.7E–03
ENSMUSG00000022771 Ppil2 003 chr16 17087409 17088082 0.4 4.9 1.6E–06 2.9E–03
ENSMUSG00000035202 Lars2 021 chr9 123370617 123371782 + −0.6 −5.0 1.6E–06 2.9E–03
ENSMUSG00000052423 B4galt3 015 chr1 173201771 173201773 + −1.3 −4.9 1.6E–06 3.0E–03
ENSMUSG00000016346 Kcnq2 047 chr2 180869912 180869948 1.4 4.9 1.8E–06 3.3E–03
ENSMUSG00000020402 Vdac1 013 chr11 52199869 52199973 + −0.6 −4.9 1.8E–06 3.3E–03
ENSMUSG00000003279 Dlgap1 004 chr17 70318713 70318741 + 0.7 4.8 1.8E–06 3.4E–03
ENSMUSG00000018040 Rrp7a 009 chr15 82948605 82948776 0.7 5.0 1.9E–06 3.4E–03
ENSMUSG00000042042 Csgalnact2 007 chr6 118074432 118076139 1.2 5.0 2.0E–06 3.5E–03
ENSMUSG00000030189 Csda 018 chr6 131338232 131338468 1.2 4.9 2.0E–06 3.6E–03
ENSMUSG00000026918 Brd3 013 chr2 27308971 27309832 −1.2 −4.8 2.0E–06 3.6E–03
ENSMUSG00000021830 Txndc16 017 chr14 45787030 45787898 1.7 4.8 2.1E–06 3.7E–03
ENSMUSG00000065452 + ENSMUSG00000028410 Mir207/Dnaja1 027 chr4 40678833 40679108 + 0.5 4.9 2.1E–06 3.7E–03
ENSMUSG00000059552 Trp53 018 chr11 69403365 69404007 + 0.7 4.9 2.2E–06 3.8E–03
ENSMUSG00000037058 Paip2 010 chr18 35769938 35770524 + 0.3 4.9 2.2E–06 3.8E–03
ENSMUSG00000068221 + ENSMUSG00000022436 Pdxp/Sh3bp1 031 chr15 78744349 78744961 + 0.3 4.8 2.2E–06 3.8E–03
ENSMUSG00000028796 Phc2 019 chr4 128404829 128404925 + 2.0 4.8 2.3E–06 3.9E–03
ENSMUSG00000039219 Arid4b 042 chr13 14283524 14284215 + −0.8 −4.8 2.3E–06 3.9E–03
ENSMUSG00000027655 Dhx35 035 chr2 158676365 158676477 + 1.4 4.8 2.3E–06 3.9E–03
ENSMUSG00000024163 + ENSMUSG00000073436 Mapk8ip3/Eme2 062 chr17 25038763 25039222 0.3 4.7 2.4E–06 4.0E–03
ENSMUSG00000039470 Zdhhc2 004 chr8 41509194 41509212 + 1.5 4.8 2.4E–06 4.0E–03
ENSMUSG00000068921 Dap3 001 chr3 88724725 88727556 −0.3 −4.8 2.4E–06 4.0E–03
ENSMUSG00000042605 Atxn2 002 chr5 122161618 122162285 + 0.7 4.8 2.4E–06 4.0E–03
ENSMUSG00000006024 Napa 016 chr7 16698993 16699469 + 0.3 4.8 2.5E–06 4.1E–03
ENSMUSG00000066900 Suds3 014 chr5 117565681 117566002 0.3 4.9 2.6E–06 4.2E–03
ENSMUSG00000050530 Fam171a1 002 chr2 3035654 3035684 + 2.0 4.9 2.6E–06 4.2E–03
ENSMUSG00000038291 Snx25 029 chr8 47237136 47237511 1.9 4.8 2.8E–06 4.5E–03
ENSMUSG00000039108 Lsm14b 001 chr2 179759692 179760017 + 0.5 4.9 2.8E–06 4.5E–03
ENSMUSG00000084896 + ENSMUSG00000020883 Gm11632/Fbxl20 014 chr11 97956818 97958242 −0.6 −4.8 2.9E–06 4.7E–03
ENSMUSG00000017412 Cacnb4 001 chr2 52283845 52290269 0.3 4.8 3.0E–06 4.8E–03
ENSMUSG00000002984 Tomm40 008 chr7 20288492 20288617 0.6 4.8 3.2E–06 5.0E–03
ENSMUSG00000039759 Thap3 004 chr4 151359568 151359777 −0.5 −5.0 3.3E–06 5.2E–03
ENSMUSG00000038822 Hace1 010 chr10 45325391 45325393 + 2.1 4.7 3.4E–06 5.3E–03
ENSMUSG00000052373 Mpp3 012 chr11 101870999 101871520 0.7 4.7 3.4E–06 5.3E–03
ENSMUSG00000084708 + ENSMUSG00000065862
 + ENSMUSG00000059796
//Eif4a1 038 chr11 69484604 69484724 0.5 4.7 3.4E–06 5.3E–03
ENSMUSG00000025155 Dus1l 009 chr11 120651195 120651761 0.4 4.7 3.5E–06 5.3E–03
ENSMUSG00000036545 Adamts2 028 chr11 50617071 50621075 + −0.8 −4.8 3.5E–06 5.3E–03
ENSMUSG00000038429 Usp5 025 chr6 124772861 124773037 0.7 4.7 3.5E–06 5.3E–03
ENSMUSG00000061887 Ssbp3 002 chr4 106584075 106584115 + 1.9 4.7 3.7E–06 5.6E–03
ENSMUSG00000084708 + ENSMUSG00000065862
 + ENSMUSG00000059796
//Eif4a1 039 chr11 69484725 69484952 0.5 4.7 3.8E–06 5.6E–03
ENSMUSG00000021087 Rtn1 003 chr12 73313276 73313276 −0.2 −4.8 3.8E–06 5.6E–03
ENSMUSG00000024012 Mtch1 029 chr17 29484412 29484704 0.3 4.7 3.8E–06 5.6E–03
ENSMUSG00000026885 Ttll11 024 chr2 35835145 35835286 0.6 4.7 3.9E–06 5.6E–03
ENSMUSG00000040896 Kcnd3 009 chr3 105468465 105469879 + 0.9 4.8 3.9E–06 5.6E–03
ENSMUSG00000040859 Bsdc1 017 chr4 129146293 129147418 + 0.7 4.7 3.9E–06 5.7E–03
ENSMUSG00000028063 Lmna 005 chr3 88286535 88286786 0.6 4.7 4.0E–06 5.7E–03
ENSMUSG00000053046 + ENSMUSG00000092652 Brsk2/Mir3104 002 chr7 149135751 149135911 + 0.9 4.7 4.0E–06 5.7E–03
ENSMUSG00000032997 + ENSMUSG00000026211 Chpf/Obsl1 060 chr1 75499791 75499941 −2.6 −4.7 4.0E–06 5.8E–03
ENSMUSG00000023952 Gtpbp2 035 chr17 46303816 46303936 + 0.7 4.7 4.2E–06 6.0E–03
ENSMUSG00000050989 Sepn1 019 chr4 134107852 134108081 1.2 4.8 4.3E–06 6.1E–03
ENSMUSG00000027223 Mapk8ip1 018 chr2 92241186 92241420 0.4 4.8 4.3E–06 6.1E–03
ENSMUSG00000031167 Rbm3 005 chrX 7719487 7719493 1.7 4.7 4.4E–06 6.1E–03
ENSMUSG00000047617 BC029214 024 chr2 25316142 25316174 −0.7 −4.7 4.4E–06 6.1E–03
ENSMUSG00000030447 Cyfip1 051 chr7 63185842 63185868 + −0.8 −4.6 4.5E–06 6.3E–03
ENSMUSG00000013593 Ndufs2 015 chr1 173170159 173170186 0.8 4.7 4.7E–06 6.4E–03
ENSMUSG00000000441 Raf1 007 chr6 115570346 115571833 0.2 4.7 4.7E–06 6.5E–03
ENSMUSG00000027001 + ENSMUSG00000026999 Dusp19/Nup35 032 chr2 80496235 80497345 + −0.9 −4.7 5.0E–06 6.7E–03
ENSMUSG00000038822 Hace1 034 chr10 45420831 45429686 + −0.3 −4.6 5.0E–06 6.7E–03
ENSMUSG00000073174 + ENSMUSG00000040003 Magi2/Magi2 030 chr5 20208194 20208297 + 0.8 4.7 5.0E–06 6.7E–03
ENSMUSG00000025487 Psmd13 024 chr7 148076311 148076393 + 0.8 4.6 5.0E–06 6.7E–03
ENSMUSG00000036067 Slc2a6 009 chr2 26879856 26880104 −0.6 −4.7 5.1E–06 6.8E–03
ENSMUSG00000057236 Rbbp4 016 chr4 129002068 129005831 0.5 4.7 5.1E–06 6.8E–03
ENSMUSG00000031511 Arhgef7 028 chr8 11830238 11831492 + 0.3 4.7 5.1E–06 6.8E–03
ENSMUSG00000030207 8430419L09Rik 017 chr6 135182873 135183273 + −0.4 −4.7 5.2E–06 6.8E–03
ENSMUSG00000026977 March7 025 chr2 60085570 60085946 + 0.6 4.7 5.3E–06 6.9E–03
ENSMUSG00000028782 Bai2 046 chr4 129698499 129698806 + 0.3 4.6 5.4E–06 7.1E–03
ENSMUSG00000021772 Nkiras1 014 chr14 19109961 19110079 + 0.7 4.7 5.5E–06 7.1E–03
ENSMUSG00000027674 Pex5l 032 chr3 33042005 33042169 0.7 4.6 5.5E–06 7.1E–03
ENSMUSG00000074886 Grk6 001 chr13 55546695 55546921 + 0.5 4.7 5.5E–06 7.1E–03
ENSMUSG00000031392 + ENSMUSG00000076127
 + ENSMUSG00000092907
Irak1/Mir718/
Mir5132
057 chrX 71269166 71269170 1.9 4.6 5.6E–06 7.2E–03
ENSMUSG00000025134 Alyref 011 chr11 120459546 120459679 1.4 4.8 5.6E–06 7.2E–03
ENSMUSG00000023952 Gtpbp2 036 chr17 46303937 46304171 + 0.5 4.6 5.7E–06 7.2E–03
ENSMUSG00000024392 Bag6 034 chr17 35278339 35278370 + 0.8 4.6 5.7E–06 7.2E–03
ENSMUSG00000005469 Prkaca 001 chr8 86496877 86497131 + 0.5 4.8 5.9E–06 7.3E–03
ENSMUSG00000031167 Rbm3 004 chrX 7719485 7719486 1.7 4.6 5.9E–06 7.3E–03
ENSMUSG00000031878 Nae1 008 chr8 107040635 107040889 0.7 4.6 6.1E–06 7.6E–03
ENSMUSG00000008348 Ubc 003 chr5 125866669 125866896 −0.3 −4.8 6.1E–06 7.6E–03
ENSMUSG00000022514 Il1rap 019 chr16 26722520 26723017 + 0.3 4.6 6.1E–06 7.6E–03
ENSMUSG00000001847 Rac1 011 chr5 144288631 144288861 0.5 4.7 6.3E–06 7.7E–03
ENSMUSG00000038244 Mical2 037 chr7 119497490 119498460 + 0.2 4.6 6.4E–06 7.8E–03
ENSMUSG00000027429 Sec23b 030 chr2 144405140 144406851 + 0.7 4.6 6.5E–06 7.9E–03
ENSMUSG00000042726 Trafd1 024 chr5 121835049 121835317 0.6 4.6 6.7E–06 8.1E–03
ENSMUSG00000092367 + ENSMUSG00000011751
 + ENSMUSG00000089832
Gm20479/
 Spnb4/Shkbp1
007 chr7 28127780 28127940 0.4 4.5 6.8E–06 8.1E–03
ENSMUSG00000003808 Farsa 027 chr8 87391986 87392122 + 0.4 4.6 6.8E–06 8.1E–03
ENSMUSG00000049327 Setd8 006 chr5 124895592 124895672 + 1.4 4.6 6.8E–06 8.1E–03
ENSMUSG00000006392 Med8 007 chr4 118082953 118083489 + 0.6 4.6 6.8E–06 8.1E–03
ENSMUSG00000031167 Rbm3 006 chrX 7719494 7719666 1.7 4.6 7.6E–06 8.9E–03
ENSMUSG00000033184 + ENSMUSG00000056130 Tmed7/Ticam2 012 chr18 46756969 46757170 0.6 4.7 7.9E–06 9.2E–03
ENSMUSG00000032301 Psma4 007 chr9 54799151 54799235 + −0.8 −4.6 7.9E–06 9.3E–03
ENSMUSG00000007670 Khsrp 026 chr17 57170571 57170930 0.5 4.6 8.2E–06 9.5E–03
ENSMUSG00000034064 Poglut1 008 chr16 38531927 38532578 0.5 4.6 8.2E–06 9.6E–03
ENSMUSG00000022514 Il1rap 020 chr16 26723018 26723306 + 0.5 4.5 8.6E–06 9.9E–03
ENSMUSG00000047617 BC029214 023 chr2 25316015 25316141 −0.5 −4.5 8.7E–06 1.0E–02
ENSMUSG00000026209 Dnpep 004 chr1 75305285 75305873 0.4 4.6 8.7E–06 1.0E–02
ENSMUSG00000029047 Pex10 012 chr4 154443226 154444495 + 0.6 4.6 9.0E–06 1.0E–02
ENSMUSG00000026103 Gls 052 chr1 52289656 52290067 0.4 4.5 9.1E–06 1.0E–02
ENSMUSG00000006958 Chrd 016 chr16 20736516 20736981 + −0.4 −4.5 9.1E–06 1.0E–02
ENSMUSG00000023952 Gtpbp2 031 chr17 46302947 46303259 + 0.4 4.5 9.2E–06 1.0E–02
ENSMUSG00000020376 Rnf130 001 chr11 49838848 49838849 + 2.8 4.6 9.4E–06 1.1E–02
ENSMUSG00000022433 Csnk1e 035 chr15 79272430 79272432 0.8 4.5 9.4E–06 1.1E–02
ENSMUSG00000018501 Ncor1 099 chr11 62270650 62270825 0.8 4.5 9.5E–06 1.1E–02
ENSMUSG00000079737 + ENSMUSG00000022684 3110001I22Rik/
Bfar
006 chr16 13676927 13678498 + 0.5 4.6 9.6E–06 1.1E–02
ENSMUSG00000030852 Tacc2 003 chr7 137765235 137770355 + 1.3 4.5 9.6E–06 1.1E–02
ENSMUSG00000020684 Rasl10b 003 chr11 83223190 83223383 + 0.6 4.7 9.7E–06 1.1E–02
ENSMUSG00000030058 Copg 028 chr6 87852761 87853478 + 0.4 4.5 9.7E–06 1.1E–02
ENSMUSG00000023984 + ENSMUSG00000090115
 + ENSMUSG00000092558
Gm20517/
Usp49/Med20
013 chr17 47756513 47759833 + 0.4 4.5 9.9E–06 1.1E–02
ENSMUSG00000090213 + ENSMUSG00000089739
 + ENSMUSG00000078923
Tmem189/
Gm20431/
Ube2v1
032 chr2 167487055 167487056 1.9 4.5 9.9E–06 1.1E–02
ENSMUSG00000071984 Fndc1 001 chr17 7931434 7932195 0.3 4.5 1.0E–05 1.1E–02
ENSMUSG00000027674 Pex5l 031 chr3 33041999 33042004 0.7 4.5 1.1E–05 1.1E–02
ENSMUSG00000029550 Sppl3 002 chr5 115461155 115461624 + 0.4 4.5 1.1E–05 1.1E–02
ENSMUSG00000036940 Kdm1a 039 chr4 136158224 136158602 0.5 4.5 1.1E–05 1.1E–02
ENSMUSG00000030603 Psmc4 021 chr7 28834222 28834719 0.4 4.5 1.1E–05 1.2E–02
ENSMUSG00000050357 Rltpr 040 chr8 108219675 108220760 + 0.3 4.5 1.1E–05 1.2E–02
ENSMUSG00000028041 Adam15 014 chr3 89144102 89144274 0.4 4.4 1.1E–05 1.2E–02
ENSMUSG00000091509 + ENSMUSG00000022119 Gm17066/
Rbm26
013 chr14 105515352 105516202 −0.7 −4.5 1.1E–05 1.2E–02
ENSMUSG00000022456 Sept3 002 chr15 82105677 82105916 + 0.3 4.6 1.1E–05 1.2E–02
ENSMUSG00000030204 Ddx47 025 chr6 134969130 134970633 + −0.4 −4.5 1.2E–05 1.2E–02
ENSMUSG00000023952 Gtpbp2 045 chr17 46304971 46305094 + 0.3 4.4 1.2E–05 1.2E–02
ENSMUSG00000021018 Polr2h 002 chr16 20718245 20718742 + 0.6 4.7 1.2E–05 1.2E–02
ENSMUSG00000015467 + ENSMUSG00000015474
 + ENSMUSG00000092176
Egfl8/Ppt2/
Gm20460
020 chr17 34752267 34752276 2.4 4.4 1.2E–05 1.2E–02
ENSMUSG00000039219 Arid4b 044 chr13 14284369 14285632 + −0.5 −4.4 1.3E–05 1.4E–02
ENSMUSG00000057672 Pkn1 043 chr8 86223035 86223066 1.4 4.4 1.3E–05 1.4E–02
ENSMUSG00000034863 Ano8 001 chr8 73999922 74000820 0.3 4.5 1.3E–05 1.4E–02
ENSMUSG00000003778 Brd8 025 chr18 34771145 34772690 −1.1 −4.4 1.3E–05 1.4E–02
ENSMUSG00000004947 Dtx2 015 chr5 136495428 136497624 + 0.8 4.4 1.3E–05 1.4E–02
ENSMUSG00000068917 Clk2 019 chr3 88976087 88977298 + 0.8 4.4 1.4E–05 1.4E–02
ENSMUSG00000064267 Hvcn1 013 chr5 122688520 122688646 + 0.5 4.5 1.4E–05 1.4E–02
ENSMUSG00000057788 Ddx49 011 chr8 72819719 72820281 0.4 4.5 1.4E–05 1.4E–02
ENSMUSG00000057672 Pkn1 042 chr8 86222997 86223034 1.2 4.4 1.4E–05 1.4E–02
ENSMUSG00000027710 Acad9 015 chr3 35979219 35979628 + 0.8 4.4 1.5E–05 1.4E–02
ENSMUSG00000031447 Lamp1 001 chr8 13159135 13159434 + 0.6 4.6 1.5E–05 1.4E–02
ENSMUSG00000039470 Zdhhc2 005 chr8 41509213 41509353 + 0.9 4.4 1.5E–05 1.4E–02
ENSMUSG00000021493 Pdlim7 021 chr13 55609242 55609568 0.3 4.4 1.5E–05 1.4E–02
ENSMUSG00000071793 2610005L07Rik 002 chr8 19981360 19983980 0.3 4.5 1.5E–05 1.4E–02
ENSMUSG00000044060 + ENSMUSG00000089798 A830010M20Rik/
1700028K03Rik
003 chr5 107926397 107926739 + 1.6 4.4 1.5E–05 1.4E–02
ENSMUSG00000058301 Upf1 024 chr8 72876677 72877172 0.4 4.4 1.5E–05 1.5E–02
ENSMUSG00000008976 Gabpa 011 chr16 84856285 84856706 + 1.1 4.4 1.5E–05 1.5E–02
ENSMUSG00000007617 Homer1 016 chr13 94136198 94136232 + 1.6 4.4 1.5E–05 1.5E–02
ENSMUSG00000074247 Dda1 013 chr8 73996515 73996681 + 0.6 4.5 1.5E–05 1.5E–02
ENSMUSG00000029478 Ncor2 011 chr5 125503295 125503590 1.3 4.3 1.6E–05 1.5E–02
ENSMUSG00000055805 Fmnl1 035 chr11 103059093 103059190 + 0.4 4.4 1.6E–05 1.5E–02
ENSMUSG00000036459 Wtip 014 chr7 34917838 34918287 1.5 4.5 1.6E–05 1.5E–02
ENSMUSG00000028041 Adam15 027 chr3 89146654 89147034 0.5 4.4 1.6E–05 1.6E–02
ENSMUSG00000035569 Ankrd11 023 chr8 125565849 125565897 0.7 4.4 1.6E–05 1.6E–02
ENSMUSG00000024068 Spast 001 chr17 74738327 74738785 + 0.4 4.4 1.7E–05 1.6E–02
ENSMUSG00000038502 Ptov1 035 chr7 52124721 52125158 0.3 4.4 1.7E–05 1.6E–02
ENSMUSG00000002010 Idh3g 029 chrX 71027708 71028013 0.4 4.4 1.7E–05 1.6E–02
ENSMUSG00000028967 Errfi1 003 chr4 150229577 150229923 + −1.6 −4.6 1.7E–05 1.6E–02
ENSMUSG00000089704 + ENSMUSG00000031826
 + ENSMUSG00000092329
Galnt2/Usp10/
Gm20388
031 chr8 122478834 122479217 + 0.5 4.3 1.8E–05 1.7E–02
ENSMUSG00000022514 Il1rap 027 chr16 26728019 26728314 + −0.5 −4.4 1.9E–05 1.7E–02
ENSMUSG00000089012 + ENSMUSG00000017421 /Zfp207 026 chr11 80211918 80211972 + −0.4 −4.4 1.9E–05 1.7E–02
ENSMUSG00000031392 + ENSMUSG00000076127
 + ENSMUSG00000092907
Irak1/Mir718/
Mir5132
058 chrX 71269171 71269187 1.9 4.3 1.9E–05 1.7E–02
ENSMUSG00000045009 Prrt3 002 chr6 113446294 113446925 0.5 4.6 1.9E–05 1.7E–02
ENSMUSG00000022710 Usp7 020 chr16 8697013 8697568 0.5 4.3 1.9E–05 1.8E–02
ENSMUSG00000037300 Ttc13 021 chr8 127206060 127206430 −0.5 −4.3 1.9E–05 1.8E–02
ENSMUSG00000089661 + ENSMUSG00000053291
 + ENSMUSG00000093348
Mia1/Rab4b/
Mir3101
022 chr7 27961113 27961176 −0.6 −4.3 1.9E–05 1.8E–02
ENSMUSG00000050640 Tmem150c 004 chr5 100512966 100515024 −0.3 −4.4 2.0E–05 1.8E–02
ENSMUSG00000027692 Tnik 046 chr3 28565151 28565371 + −0.5 −4.3 2.0E–05 1.8E–02
ENSMUSG00000092367 + ENSMUSG00000011751
 + ENSMUSG00000089832
Gm20479/
Spnb4/Shkbp1
015 chr7 28132192 28132473 0.7 4.3 2.0E–05 1.8E–02
ENSMUSG00000029064 Gnb1 001 chr4 154865470 154865478 + 1.9 4.4 2.1E–05 1.8E–02
ENSMUSG00000032737 Inppl1 010 chr7 108976713 108976802 −0.4 −4.3 2.1E–05 1.8E–02
ENSMUSG00000044857 Lemd2 009 chr17 27340604 27341383 0.6 4.5 2.1E–05 1.8E–02
ENSMUSG00000055313 Pgbd1 008 chr13 21526220 21526540 −1.2 −4.4 2.1E–05 1.8E–02
ENSMUSG00000021910 Nisch 032 chr14 31994136 31994656 0.3 4.3 2.1E–05 1.8E–02
ENSMUSG00000025060 Slk 001 chr19 47654168 47654508 + 1.2 4.3 2.1E–05 1.9E–02
ENSMUSG00000052423 B4galt3 011 chr1 173201123 173201236 + −0.6 −4.3 2.2E–05 1.9E–02
ENSMUSG00000071644 Eef1g 008 chr19 9044478 9044691 + −0.8 −4.4 2.2E–05 1.9E–02
ENSMUSG00000001763 Tspan33 001 chr6 29644222 29644233 + 1.7 4.4 2.2E–05 1.9E–02
ENSMUSG00000022656 Pvrl3 027 chr16 46496966 46497080 2.0 4.3 2.2E–05 1.9E–02
ENSMUSG00000035901 Dennd5a 034 chr7 117103791 117103837 1.1 4.3 2.2E–05 1.9E–02
ENSMUSG00000019854 Reps1 002 chr10 17775712 17775745 + 0.8 4.3 2.2E–05 1.9E–02
ENSMUSG00000000568 Hnrnpd 009 chr5 100391153 100391223 0.4 4.3 2.2E–05 1.9E–02
ENSMUSG00000089715 + ENSMUSG00000089837
 + ENSMUSG00000022421
Cbx6/Npcd/
Nptxr
012 chr15 79634889 79635058 0.9 4.3 2.3E–05 1.9E–02
ENSMUSG00000026839 Upp2 002 chr2 58419729 58419797 + 0.9 4.4 2.3E–05 2.0E–02
ENSMUSG00000026426 Arl8a 001 chr1 137043401 137043677 + 0.2 4.4 2.3E–05 2.0E–02
ENSMUSG00000028381 Ugcg 001 chr4 59202129 59202429 + 1.7 4.4 2.4E–05 2.0E–02
ENSMUSG00000041506 Rrp9 023 chr9 106386851 106387407 + 0.4 4.3 2.5E–05 2.1E–02
ENSMUSG00000054934 Kcnmb4 001 chr10 115854917 115855462 −0.6 −4.5 2.5E–05 2.1E–02
ENSMUSG00000063160 + ENSMUSG00000003762 Numbl/Adck4 037 chr7 28047272 28049894 + 0.3 4.3 2.5E–05 2.1E–02
ENSMUSG00000072770 + ENSMUSG00000030330 Acrbp/Ing4 037 chr6 125001261 125001378 + 0.5 4.3 2.6E–05 2.2E–02
ENSMUSG00000024182 Axin1 004 chr17 26275848 26275894 + 1.3 4.3 2.6E–05 2.2E–02
ENSMUSG00000024835 Coro1b 021 chr19 4152580 4152808 + −0.3 −4.3 2.6E–05 2.2E–02
ENSMUSG00000033059 Pygb 019 chr2 150649343 150649711 + 0.8 4.3 2.6E–05 2.2E–02
ENSMUSG00000025571 Tnrc6c 016 chr11 117603815 117604240 + −0.6 −4.3 2.6E–05 2.2E–02
ENSMUSG00000035953 Tmem55b 005 chr14 51547713 51548495 0.3 4.3 2.6E–05 2.2E–02
ENSMUSG00000059248 Sept9 021 chr11 117218024 117218313 + 0.9 4.3 2.7E–05 2.2E–02
ENSMUSG00000004846 + ENSMUSG00000076240 Plod3/Mir702 033 chr5 137470929 137471047 + 0.7 4.3 2.7E–05 2.2E–02
ENSMUSG00000039069 Gtpbp5 017 chr2 179818166 179818768 + 0.4 4.3 2.8E–05 2.2E–02
ENSMUSG00000031979 Cog2 014 chr8 127066851 127067909 + 0.4 4.3 2.8E–05 2.3E–02
ENSMUSG00000031392 + ENSMUSG00000076127
 + ENSMUSG00000092907
Irak1/Mir718/
Mir5132
055 chrX 71269085 71269147 0.9 4.2 2.8E–05 2.3E–02
ENSMUSG00000009207 Lnp 022 chr2 74389952 74393044 −0.7 −4.2 2.8E–05 2.3E–02
ENSMUSG00000030374 Strn4 021 chr7 17417980 17418274 + 0.3 4.2 2.8E–05 2.3E–02
ENSMUSG00000019927 Ube2d1 008 chr10 70722568 70724831 0.3 4.4 2.8E–05 2.3E–02
ENSMUSG00000052949 Rnf157 037 chr11 116274319 116274346 1.7 4.2 2.9E–05 2.4E–02
ENSMUSG00000036052 Dnajb5 003 chr4 42962786 42962876 + −0.4 −4.3 3.0E–05 2.4E–02
ENSMUSG00000040048 Ndufb10 002 chr17 24859166 24859325 0.5 4.3 3.0E–05 2.4E–02
ENSMUSG00000038848 Ythdf1 009 chr2 180655389 180655654 0.8 4.4 3.0E–05 2.4E–02
ENSMUSG00000020610 Amz2 020 chr11 109298566 109299462 + 0.2 4.3 3.0E–05 2.4E–02
ENSMUSG00000075876 + ENSMUSG00000064791
 + ENSMUSG00000075924
 + ENSMUSG00000015656
Snord14c/
Snord14e/
Snord14d/Hspa8
024 chr9 40611297 40611462 + −0.6 −4.2 3.1E–05 2.4E–02
ENSMUSG00000063659 Zfp238 002 chr1 179375952 179377219 + 0.4 4.7 3.1E–05 2.4E–02
ENSMUSG00000004865 Srpk1 026 chr17 28757088 28757398 2.6 4.2 3.1E–05 2.4E–02
ENSMUSG00000002325 + ENSMUSG00000047098 Irf9/Rnf31 062 chr14 56227758 56228864 + 0.3 4.2 3.1E–05 2.4E–02
ENSMUSG00000038244 Mical2 012 chr7 119459543 119461899 + −0.5 −4.2 3.1E–05 2.5E–02
ENSMUSG00000041740 Rnf10 012 chr5 115693701 115694029 0.6 4.2 3.2E–05 2.5E–02
ENSMUSG00000045205 Dpy19l4 001 chr4 11188462 11192225 0.3 4.2 3.2E–05 2.5E–02
ENSMUSG00000026860 Sh3glb2 023 chr2 30205260 30205807 0.4 4.2 3.2E–05 2.5E–02
ENSMUSG00000022974 Gcfc1 033 chr16 91044251 91044409 0.7 4.2 3.2E–05 2.5E–02
ENSMUSG00000028863 Meaf6 014 chr4 124780674 124780747 + 0.6 4.2 3.2E–05 2.5E–02
ENSMUSG00000052997 Uba2 007 chr7 34927894 34928288 0.5 4.2 3.3E–05 2.5E–02
ENSMUSG00000001911 Nfix 031 chr8 87324040 87324243 2.5 4.2 3.3E–05 2.5E–02
ENSMUSG00000034656 Cacna1a 067 chr8 87163145 87163333 + 0.4 4.2 3.3E–05 2.5E–02
ENSMUSG00000019843 Fyn 004 chr10 39089609 39089996 + 0.3 4.2 3.3E–05 2.5E–02
ENSMUSG00000031167 Rbm3 001 chrX 7716101 7716103 2.0 4.2 3.6E–05 2.7E–02
ENSMUSG00000022514 Il1rap 026 chr16 26727733 26728018 + −0.5 −4.2 3.6E–05 2.8E–02
ENSMUSG00000004233 Wars2 014 chr3 99039402 99040231 + 2.3 4.2 3.7E–05 2.8E–02
ENSMUSG00000024571 + ENSMUSG00000057130 Gm16286/Txnl4a 017 chr18 80404083 80404423 + −0.7 −4.2 3.7E–05 2.8E–02
ENSMUSG00000020978 Klhdc2 002 chr12 70397709 70397741 + 0.7 4.2 3.7E–05 2.8E–02
ENSMUSG00000024335 Brd2 037 chr17 34258693 34258933 2.3 4.2 3.8E–05 2.9E–02
ENSMUSG00000026155 Smap1 025 chr1 23928877 23929156 0.3 4.2 3.8E–05 2.9E–02
ENSMUSG00000004561 + ENSMUSG00000072572 Mettl17/Slc39a2 055 chr14 52514182 52514573 + 0.3 4.2 3.8E–05 2.9E–02
ENSMUSG00000019254 Ppp1r12c 053 chr7 4453267 4453282 1.1 4.2 3.9E–05 2.9E–02
ENSMUSG00000040331 Nsmce4a 020 chr7 137690506 137690895 0.3 4.2 3.9E–05 2.9E–02
ENSMUSG00000005882 Uqcc 030 chr2 155736341 155737476 −0.7 −4.2 4.0E–05 2.9E–02
ENSMUSG00000021234 Fam161b 004 chr12 85687442 85687736 0.6 4.2 4.0E–05 3.0E–02
ENSMUSG00000008153 Clstn3 005 chr6 124386790 124386835 1.0 4.2 4.1E–05 3.0E–02
ENSMUSG00000021610 Clptm1l 001 chr13 73741554 73741847 + 0.2 4.2 4.3E–05 3.1E–02
ENSMUSG00000027303 Ptpra 002 chr2 130276280 130276294 + 0.5 4.2 4.3E–05 3.2E–02
ENSMUSG00000038546 Ranbp9 017 chr13 43576247 43576297 1.7 4.2 4.4E–05 3.2E–02
ENSMUSG00000030374 Strn4 020 chr7 17416930 17416988 + 0.5 4.1 4.4E–05 3.2E–02
ENSMUSG00000025198 Erlin1 024 chr19 44144181 44144186 −1.0 −4.2 4.4E–05 3.2E–02
ENSMUSG00000031292 Cdkl5 021 chrX 157432523 157432634 −1.8 −4.2 4.5E–05 3.3E–02
ENSMUSG00000086285 D630044L22Rik 006 chr17 26099007 26099155 + −1.4 −4.3 4.6E–05 3.3E–02
ENSMUSG00000019189 Rnf145 012 chr11 44365322 44368479 + −0.5 −4.2 4.6E–05 3.3E–02
ENSMUSG00000028849 Mtap7d1 017 chr4 125914140 125914303 0.2 4.1 4.6E–05 3.3E–02
ENSMUSG00000027642 Rpn2 034 chr2 157147897 157148207 + 0.4 4.1 4.6E–05 3.3E–02
ENSMUSG00000053907 Mat2a 002 chr6 72384390 72384538 0.3 4.2 4.6E–05 3.3E–02
ENSMUSG00000001416 Cct3 008 chr3 88103326 88104721 + 0.5 4.1 4.6E–05 3.3E–02
ENSMUSG00000022265 Ank 001 chr15 27396432 27396854 + 0.3 4.2 4.6E–05 3.3E–02
ENSMUSG00000025103 Btbd1 008 chr7 88973859 88974317 0.3 4.3 4.7E–05 3.3E–02
ENSMUSG00000085609 1700016P03Rik 002 chr11 74987480 74987663 + 1.4 4.6 4.7E–05 3.3E–02
ENSMUSG00000044783 Hjurp 023 chr1 90171673 90173793 0.5 4.1 4.7E–05 3.3E–02
ENSMUSG00000031245 Hmgn5 001 chrX 106199873 106201410 0.4 4.4 4.7E–05 3.3E–02
ENSMUSG00000034135 Sik3 002 chr9 45820947 45821082 + 0.8 4.1 4.8E–05 3.3E–02
ENSMUSG00000029364 Wsb2 001 chr5 117807313 117807313 + 2.2 4.2 4.8E–05 3.4E–02
ENSMUSG00000000568 Hnrnpd 008 chr5 100391117 100391152 0.4 4.1 4.9E–05 3.4E–02
ENSMUSG00000028347 Tmeff1 002 chr4 48598065 48598236 + 1.1 4.2 4.9E–05 3.4E–02
ENSMUSG00000025198 Erlin1 025 chr19 44144187 44144234 −1.0 −4.1 4.9E–05 3.4E–02
ENSMUSG00000033904 6330503K22Rik 022 chr7 125876487 125878781 + 0.3 4.1 4.9E–05 3.4E–02
ENSMUSG00000023087 Ccrn4l 003 chr3 51044128 51051726 + 0.4 4.3 4.9E–05 3.4E–02
ENSMUSG00000067713 Prkag1 001 chr15 98643229 98643911 −0.3 −4.2 4.9E–05 3.4E–02
ENSMUSG00000090266 + ENSMUSG00000020818 1110005A03Rik/
Mfsd11
033 chr11 116719896 116720427 + −0.8 −4.1 5.0E–05 3.4E–02
ENSMUSG00000028412 Slc44a1 002 chr4 53453543 53453555 + 0.7 4.1 5.0E–05 3.4E–02
ENSMUSG00000027351 Spred1 001 chr2 116947110 116947373 + 0.8 4.3 5.0E–05 3.4E–02
ENSMUSG00000028047 Thbs3 020 chr3 89025074 89025135 + 1.1 4.1 5.1E–05 3.5E–02
ENSMUSG00000003279 Dlgap1 005 chr17 70318742 70318760 + 0.6 4.1 5.3E–05 3.6E–02
ENSMUSG00000030584 Dpf1 006 chr7 30093118 30093973 + 0.5 4.1 5.3E–05 3.6E–02
ENSMUSG00000045994 B3gat1 002 chr9 26541388 26541408 + 1.9 4.1 5.3E–05 3.6E–02
ENSMUSG00000003360 Ddx23 020 chr15 98482970 98483318 0.5 4.1 5.4E–05 3.6E–02
ENSMUSG00000004994 Ccdc130 011 chr8 86785700 86785805 0.9 4.1 5.4E–05 3.6E–02
ENSMUSG00000063873 Slc24a3 002 chr2 144993655 144993933 + 0.4 4.1 5.6E–05 3.7E–02
ENSMUSG00000078919 + ENSMUSG00000051149 Dpm1/Adnp 009 chr2 168032210 168032422 0.9 4.1 5.6E–05 3.7E–02
ENSMUSG00000052423 B4galt3 030 chr1 173204520 173206012 + 0.3 4.1 5.6E–05 3.7E–02
ENSMUSG00000058239 Usf2 007 chr7 31731875 31731898 −0.3 −4.1 5.7E–05 3.7E–02
ENSMUSG00000027639 Samhd1 004 chr2 156925240 156927056 0.4 4.1 5.7E–05 3.7E–02
ENSMUSG00000032557 Uba5 016 chr9 103962489 103962547 0.8 4.1 5.7E–05 3.8E–02
ENSMUSG00000049092 Gpr137c 001 chr14 45839394 45839667 + 1.2 4.2 5.8E–05 3.8E–02
ENSMUSG00000019970 Sgk1 002 chr10 21602175 21602513 + −0.5 −4.1 5.8E–05 3.8E–02
ENSMUSG00000072770 + ENSMUSG00000030330 Acrbp/Ing4 041 chr6 125001872 125001908 + 2.4 4.1 5.8E–05 3.8E–02
ENSMUSG00000024843 Chka 032 chr19 3889989 3891730 + 0.4 4.1 5.9E–05 3.8E–02
ENSMUSG00000063873 Slc24a3 001 chr2 144993490 144993654 + 0.8 4.1 5.9E–05 3.9E–02
ENSMUSG00000020719 + ENSMUSG00000093273
 + ENSMUSG00000093133
Ddx5/Mir3064/ 020 chr11 106645047 106645272 0.2 4.1 6.0E–05 3.9E–02
ENSMUSG00000020893 Per1 026 chr11 68919799 68919954 + 0.8 4.1 6.0E–05 3.9E–02
ENSMUSG00000058239 Usf2 021 chr7 31741401 31741447 0.4 4.1 6.2E–05 4.0E–02
ENSMUSG00000003438 Timm50 013 chr7 29094525 29095097 0.7 4.1 6.2E–05 4.0E–02
ENSMUSG00000019254 Ppp1r12c 051 chr7 4452964 4453131 0.4 4.0 6.3E–05 4.0E–02
ENSMUSG00000032382 Snx1 006 chr9 65938538 65939154 0.3 4.1 6.3E–05 4.0E–02
ENSMUSG00000000902 Smarcb1 009 chr10 75367320 75368774 −0.4 −4.1 6.4E–05 4.1E–02
ENSMUSG00000015467 + ENSMUSG00000015474
 + ENSMUSG00000092176
Egfl8/Ppt2/
Gm20460
019 chr17 34752266 34752266 2.2 4.0 6.6E–05 4.2E–02
ENSMUSG00000056692 D17Wsu92e 009 chr17 27957437 27957487 1.4 4.2 6.6E–05 4.2E–02
ENSMUSG00000020719 + ENSMUSG00000093273
 + ENSMUSG00000093133
Ddx5/Mir3064/ 015 chr11 106644586 106644625 0.2 4.0 6.6E–05 4.2E–02
ENSMUSG00000060216 Arrb2 011 chr11 70249075 70249498 + 0.6 4.0 6.7E–05 4.3E–02
ENSMUSG00000047030 Spata2 002 chr2 167306933 167307058 −0.6 −4.1 6.7E–05 4.3E–02
ENSMUSG00000020128 Vps54 001 chr11 21138892 21139283 + 0.7 4.0 6.8E–05 4.3E–02
ENSMUSG00000047368 Fam108b 001 chr19 21727799 21728083 + 0.7 4.4 7.0E–05 4.4E–02
ENSMUSG00000038084 Opa1 047 chr16 29652577 29654970 + 0.2 4.0 7.0E–05 4.4E–02
ENSMUSG00000020333 Acsl6 029 chr11 54150651 54151230 + 0.4 4.0 7.1E–05 4.5E–02
ENSMUSG00000032322 Pstpip1 008 chr9 55969742 55969829 + 2.1 4.0 7.1E–05 4.5E–02
ENSMUSG00000061207 Stk19 010 chr17 34961794 34962547 0.3 4.1 7.2E–05 4.5E–02
ENSMUSG00000022974 Gcfc1 034 chr16 91044410 91044599 0.7 4.0 7.2E–05 4.5E–02
ENSMUSG00000016933 Plcg1 002 chr2 160557046 160557080 + 0.8 4.0 7.4E–05 4.6E–02
ENSMUSG00000020333 Acsl6 030 chr11 54151231 54151913 + 0.4 4.0 7.5E–05 4.6E–02
ENSMUSG00000059316 Slc27a4 004 chr2 29662518 29662875 + 0.4 4.1 7.5E–05 4.6E–02
ENSMUSG00000003848 Nob1 013 chr8 109942343 109942566 0.8 4.0 7.5E–05 4.7E–02
ENSMUSG00000078789 + ENSMUSG00000038268 Dph1/Ovca2 016 chr11 74994164 74994191 −0.8 −4.0 7.6E–05 4.7E–02
ENSMUSG00000004929 Thop1 006 chr10 80536111 80537622 + 0.6 4.0 7.6E–05 4.7E–02
ENSMUSG00000038644 Pold1 017 chr7 51789557 51789559 1.7 4.0 7.7E–05 4.7E–02
ENSMUSG00000035901 Dennd5a 035 chr7 117103838 117103914 1.0 4.0 7.9E–05 4.8E–02
ENSMUSG00000089715 + ENSMUSG00000089837
 + ENSMUSG00000022421
Cbx6/Npcd/
Nptxr
014 chr15 79635063 79635194 1.0 4.0 7.9E–05 4.8E–02
ENSMUSG00000075876 + ENSMUSG00000064791
 + ENSMUSG00000075924
 + ENSMUSG00000015656
Snord14c/
Snord14e/
Snord14d/Hspa8
031 chr9 40612078 40612163 + 1.5 4.0 7.9E–05 4.8E–02
ENSMUSG00000037266 D4Wsu53e 018 chr4 134481348 134481360 + −0.3 −4.0 7.9E–05 4.8E–02
ENSMUSG00000044700 Tmem201 003 chr4 149091187 149092128 0.4 4.0 8.0E–05 4.9E–02
ENSMUSG00000027692 Tnik 051 chr3 28569508 28574780 + −0.2 −4.0 8.1E–05 4.9E–02
ENSMUSG00000093290 + ENSMUSG00000035632 Mir3572/Cnot3 029 chr7 3611109 3612278 + 0.3 4.0 8.1E–05 4.9E–02
ENSMUSG00000009394 Syn2 001 chr6 115084920 115085478 + 0.2 4.1 8.1E–05 4.9E–02
ENSMUSG00000053754 Chd8 006 chr14 52821423 52821818 −0.5 −4.0 8.2E–05 4.9E–02
ENSMUSG00000037331 Larp1 001 chr11 57822566 57823049 + 0.5 4.0 8.2E–05 4.9E–02
ENSMUSG00000011658 Fuz 044 chr7 52157792 52158001 + 0.4 4.0 8.3E–05 4.9E–02
ENSMUSG00000074657 Kif5a 002 chr10 126666106 126666800 0.5 4.0 8.3E–05 4.9E–02
ENSMUSG00000022394 L3mbtl2 004 chr15 81494386 81494430 + −0.5 −4.0 8.3E–05 4.9E–02
ENSMUSG00000038453 Srcin1 034 chr11 97436441 97436529 1.8 4.0 8.3E–05 4.9E–02
ENSMUSG00000065438 + ENSMUSG00000065497
 + ENSMUSG00000065561
 + ENSMUSG00000091158
 + ENSMUSG00000065570
Mir377/Mir410/
Mir369/Mirg/
Mir412
018 chr12 110987305 110987665 + −0.3 −4.0 8.4E–05 5.0E–02

Upregulated bins during memory consolidation included Snord14e, which reside in the introns of the Hspa8 gene. We have recently validated Snord14e upregulation after detecting differences by microarray (Peixoto, Wimmer et al., 2015). We also discovered that a poorly studied short isoform of Homer1 known as Ania-3 (Ensembl Homer1-005) (Bottai et al., 2002) is upregulated after contextual fear conditioning. Homer1a has previously been shown to be upregulated by fear conditioning (Mahan et al., 2012), but Ania-3 has not been studied. To validate our results, we performed qPCR in a separate cohort of mice, comparing the bins observed to change to a bin of the same gene that was unchanged. Ania-3 was found to be upregulated independently of the entire Homer1 gene (Fig. 1a). Ribosome biogenesis protein Las1l exhibited bin-specific downregulation in response to contextual fear conditioning and this was also confirmed by qPCR (Fig. 1b). RNA-binding protein Rbm3, which our lab has shown to change in the hippocampus after sleep deprivation (Vecsey et al., 2012), displays complex regulation with both upregulated and downregulated bins after learning. Both the upregulated and downregulated bins were confirmed by qPCR in a separate cohort of animals (Fig. 1c). In all cases, the bin predicted to change was significantly regulated while a control bin in the same gene was unchanged.

Fig. 1.

Fig. 1

Bin-specific regulation of Homer1 (Ania-3), Las1l, and Rbm3. (A) (left) diffSplice result showing the predicted significant bin changes of the Homer1 gene in red on a log2 scale. Bins 16–18 indicate the Ania-3 isoform. (right) qPCR validation of the change in Bin18 in an independent cohort of mice. Bin 21 expression was compared as a control. (B) (left) diffSplice result showing the predicted significant bin changes of the Las1l gene in red on a log2 scale. (right) qPCR validation of the change in Bin 15 in an independent cohort of mice. Expression of Bin 17 was used as a control. (C) (left) diffSplice result showing the predicted significant bin changes of the Rbm3 gene in red on a log2 scale. (right) qPCR validation of the changes in Bin 2 and Bin 22 an independent cohort of mice. Expression of Bin 7 was used as a control. HC = homecage, FC = fear conditioned. * denotes a p-value of <0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

To test whether these changes are specific to the association of context and shock, a separate cohort of animals were either immediately shocked or exposed to the context with no footshock. Expression of Ania-3 shows a change in response to context only, but not after immediate shock (Fig. 2). This is not surprising given the overlap of gene expression between fear conditioning and spatial training (Keeley et al., 2006; Poplawski et al., 2014). An increase in Ania-3 may represent splicing changes in response to a novel environment. Las1l displays a non-significant trend toward a reduction in the context only, but not immediate shock (Fig. 2). Las1l bin 15 may represent a splicing change that occurs only with a context-shock association. Rbm3 bin 2 expression shows changes in both the immediate shock and context only conditions, (Fig. 2), suggesting that this alternative splicing occurs with minimal perturbation and may not reflect a learning event. Rbm3 bin 22 showed only a trend toward a decrease in both cases. Therefore, changes in Rbm3 bin 2 may represent any activity within the hippocampus, while Rbm3 bin 22 could be specific to context-shock associations. These results indicate that alternative splicing can occur in response to a variety of factors and may be a specific marker in the hippocampus of recent behavioral stimuli.

Fig. 2.

Fig. 2

Alternative splicing changes variably in response to either component of fear conditioning alone. The same primers used in Fig. 1 were used to test gene expression after context only (n = 8) or immediate shock controls (n = 8) or homecage animals (n = 7) and analyzed by ANOVA. Ania-3 and Las1l changes in response to the context only control and Rbm3 changes with all manipulations. This may suggest Ania-3 and Las1l are markers of contextual novelty while Rbm3 responds to many stimuli. No control bins change with either context-only or immediate shock controls. HC = homecage, CTX = context only, SH = shock only. * denotes significance below an alpha of 0.05.

4. Discussion

In this study, we provide the first evidence of genome-wide regulation of alternative splicing after learning in the hippocampus. Using bin counts produced by HTSeq and the limma Bioconductor package, we compared bins representing a unique piece of a gene against expression of that entire gene to create a list of bin-level changes. We were able to detect significant gene expression changes at 171 bins occurring in response to contextual fear conditioning at 138 genes. The exact number of potential splicing sites is not known in neurons, and splicing studies have identified as low as 3110 splicing events in neurons (Zhang et al., 2014) or as high as 92–94% of all genes (Wang et al., 2008). We suspect that 138 genes showing changes is only a small fraction of the potential change. It is unclear at this time why memory retrieval shows a larger set of changes than memory consolidation. This study used whole hippocampus, so only a small fraction of all cells in the sample are being activated by learning. However, our RUV analysis removes unwanted variation including that from nonresponsive cells, so we believe that the changes observed are due to activated neurons.

Although individual examples of alternative splicing have been observed during memory consolidation (Lubin et al., 2008; Mahan et al., 2012; Rozic, Lupowitz, Piontkewitz, & Zisapel, 2011), no studies have explored this phenomenon genome-wide. We also identified candidate genes displaying alternative regulation that may be important for learning. As previously reported (Peixoto, Wimmer et al., 2015), we confirmed that Snord14e, which exists within an intron of Hspa8, is regulated by fear conditioning. It is unclear why Snord14e increases in polyadenylated RNA, but it could be due increases in intron retention during transcription or splicing and polyadenylation of a Snord14e precursor. We also implicate the selective alternative splicing of Homer1 isoform Ania-3, RNA-binding protein Rbm3 and ribosome biogenesis regulator Las1l in learning for the first time. These results emphasize the importance of using genome-wide binning techniques to identify subtle changes in splicing following fear conditioning, which would be overlooked with standard RNA-seq analysis.

It is interesting that we observed different results for Rbm3 alternative splicing in the context only and immediate shock controls. At the gene-level, gene expression changes after contextual and spatial learning are known to overlap (Poplawski et al., 2014). Previous work from our lab has highlighted similar gene expression between fear conditioning and context-only exposure in the hippocampus, but not the amygdala (Keeley et al., 2006). Thus, we anticipated similar results between our fear conditioning results and the context only control, as was the case with all splicing events tested. This confirms our previous findings that exposure to a context is sufficient to elicit similar gene expression changes that occur when context is paired with shock.

However, we found that Rbm3 had a unique response to the components of fear conditioning, with an immediate shock being able to alter alternative splicing of bin 2 of this gene. Immediate shock does not provide the subject enough time to form a contextual representation of the space, and therefore is generally thought not to cause expression changes in the hippocampus (Huff et al., 2006). Thus, the change after immediate shock in Rbm3 may suggest that splicing of Rbm3 bin 2 in the hippocampus is altered by many brain stimuli. In contrast, Rbm3 bin 22, Ania-3 and Las1l may be specific to exposure to a novel context or context-shock association. Thus, splicing changes in Rbm3 bin 2 may not be involved in forming long-term contextual fear memories, while splicing in Ania-3 and Las1l may have a role in encoding these types of memories. We hypothesize that this may be an instance of a broader phenomenon in neuronal plasticity, where certain splicing events are regulated by any neuronal activity while others only respond to specific stimuli.

In the present study, we did not determine the type of splicing that is occurring at each of these bins, which will be the subject of future analyses. Each bin observed could be the result of many types of regulation, including exon skipping, intron retention, or alternative start/stop sites. Ania-3 has previously been reported as an alternative isoform of Homer1 that responds like an immediate early gene (Bottai et al., 2002), and the change we detect here corresponds to the unique Ania-3 exon. Whether Ania-3 splicing is regulated by SRp20, as is the case for Homer1a (Wang et al., 2014), is a subject for future investigation. Las1l bin 15 appears to be a retained intron, but whether this is part of the canonical Las1l mRNA or part of a different isoform is unknown. It is also possible that this could be a small RNA that is spliced out of the final polyadenylated mRNA. Rbm3 bin 2 is one of several potential transcriptional termination sites of Rbm3 while bin 22 could either be an early termination site or a retained intron. Further study will be required to determine the exact identity and function of the isoforms that are regulated by contextual fear conditioning.

The mechanism that drives this alternative splicing is not studied within these experiments, although transcription of certain splicing proteins such as SRp20 is known to change after fear conditioning (Antunes-Martins et al., 2007). Recent studies have also highlighted the importance of Rbfox1 in splicing and mRNA regulation in neurons (Lee et al., 2016). Our data indicates regulation of a specific isoform of splicing factor Sfpq. However, it is unclear whether these transcriptional changes would be translated into protein and affect splicing by 30 min after training. The mechanism by which alternative regulation of transcripts is controlled during memory consolidation is an important question for future studies. It is possible that changes in epigenetic modifications are regulating this selective transcript usage (Zhou, Luo, Wise, & Lou, 2014), including H3K36me3 and H4K20me1 (Luco et al., 2010; Zhu, Wang, Liu, & Wang, 2013). It would be interesting to observe whether the differential bins discovered in this study show differential histone modifications as well. We hope our findings and this unique analysis method drive further study into the mechanisms of isoform-specific changes in gene expression during memory consolidation.

Acknowledgments

This research was supported by NIH R01MH087463 to T.A.

Footnotes

Conflict of interest

None.

References

  1. Anders S, Pyl PT, Huber W. HTSeq — A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. doi: 10.1093/bioinformatics/btu638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Research. 2012;22:2008–2017. doi: 10.1101/gr.133744.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antunes-Martins A, Mizuno K, Irvine EE, Lepicard EM, Giese KP. Sex-dependent up-regulation of two splicing factors, Psf and Srp20, during hippocampal memory formation. Learning & Memory. 2007;14:693–702. doi: 10.1101/lm.640307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes P, Kirtley A, Thomas KL. Quantitatively and qualitatively different cellular processes are engaged in CA1 during the consolidation and reconsolidation of contextual fear memory. Hippocampus. 2012;22:149–171. doi: 10.1002/hipo.20879. [DOI] [PubMed] [Google Scholar]
  5. Bottai D, Guzowski JF, Schwarz MK, Kang SH, Xiao B, Lanahan A, Worley PF, Seeburg PH. Synaptic activity-induced conversion of intronic to exonic sequence in Homer 1 immediate early gene expression. Journal of Neuroscience. 2002;22:167–175. doi: 10.1523/JNEUROSCI.22-01-00167.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learning & Memory. 1998;5:365–374. [PMC free article] [PubMed] [Google Scholar]
  7. Cavallaro S, D’Agata V, Manickam P, Dufour F, Alkon DL. Memory-specific temporal profiles of gene expression in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:16279–16284. doi: 10.1073/pnas.242597199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehlers MD, Fung ET, O’Brien RJ, Huganir RL. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. Journal of Neuroscience. 1998;18:720–730. doi: 10.1523/JNEUROSCI.18-02-00720.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, Calarco JA, Blencowe BJ. Tissue-specific alternative splicing remodels protein–protein interaction networks. Molecular Cell. 2012;46:884–892. doi: 10.1016/j.molcel.2012.05.037. [DOI] [PubMed] [Google Scholar]
  10. Hawk JD, Bookout AL, Poplawski SG, Bridi M, Rao AJ, Sulewski ME, Kroener BT, Manglesdorf DJ, Abel T. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. The Journal of Clinical Investigation. 2012;122:3593–3602. doi: 10.1172/JCI64145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research. 2009a;37:1–13. doi: 10.1093/nar/gkn923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols. 2009b;4:44–57. doi: 10.1038/nprot.2008.211. [DOI] [PubMed] [Google Scholar]
  13. Huff NC, Frank M, Wright-Hardesty K, Sprunger D, Matus-Amat P, Higgins E, Rudy JW. Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. Journal of Neuroscience. 2006;26:1616–1623. doi: 10.1523/JNEUROSCI.4964-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Igaz LM, Vianna MR, Medina JH, Izquierdo I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fearmotivated learning. Journal of Neuroscience. 2002;22:6781–6789. doi: 10.1523/JNEUROSCI.22-15-06781.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jaskolski F, Coussen F, Nagarajan N, Normand E, Rosenmund C, Mulle C. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. Journal of Neuroscience. 2004;24:2506–2515. doi: 10.1523/JNEUROSCI.5116-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keeley MB, Wood MA, Isiegas C, Stein J, Hellman K, Hannenhalli S, Abel T. Differential transcriptional response to nonassociative and associative components of classical fear conditioning in the amygdala and hippocampus. Learning & Memory. 2006;13:135–142. doi: 10.1101/lm.86906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klur S, Muller C, Pereira de Vasconcelos A, Ballard T, Lopez J, Galani R, Certa U, Cassel JC. Hippocampal-dependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation. Hippocampus. 2009;19:800–816. doi: 10.1002/hipo.20562. [DOI] [PubMed] [Google Scholar]
  18. Law CW, Chen Y, Shi W, Smyth GK. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology. 2014;15:R29. doi: 10.1186/gb-2014-15-2-r29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, Geschwind DH, Black DL, Martin KC. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron. 2016;89:113–128. doi: 10.1016/j.neuron.2015.11.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leff SE, Rosenfeld MG, Evans RM. Complex transcriptional units: Diversity in gene expression by alternative RNA processing. Annual Review of Biochemistry. 1986;55:1091–1117. doi: 10.1146/annurev.bi.55.070186.005303. [DOI] [PubMed] [Google Scholar]
  21. Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC, Pizzi M, Liou HC, Sweatt JD. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. Journal of Neuroscience. 2004;24:3933–3943. doi: 10.1523/JNEUROSCI.5646-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience. 2008;28:10576–10586. doi: 10.1523/JNEUROSCI.1786-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327:996–1000. doi: 10.1126/science.1184208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mahan AL, Mou L, Shah N, Hu JH, Worley PF, Ressler KJ. Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning. Journal of Neuroscience. 2012;32:4651–4659. doi: 10.1523/JNEUROSCI.3308-11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mei B, Li C, Dong S, Jiang CH, Wang H, Hu Y. Distinct gene expression profiles in hippocampus and amygdala after fear conditioning. Brain Research Bulletin. 2005;67:1–12. doi: 10.1016/j.brainresbull.2005.03.023. [DOI] [PubMed] [Google Scholar]
  26. Mizuno K, Dempster E, Mill J, Giese KP. Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning. Genes, Brain and Behavior. 2012;11:651–659. doi: 10.1111/j.1601-183X.2012.00805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Papandrikopoulou A, Doll T, Tucker RP, Garner CC, Matus A. Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2. Nature. 1989;340:650–652. doi: 10.1038/340650a0. [DOI] [PubMed] [Google Scholar]
  28. Peixoto L, Risso D, Poplawski SG, Wimmer ME, Speed TP, Wood MA, Abel T. How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Research. 2015;43:7664–7674. doi: 10.1093/nar/gkv736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S, Abel T. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics. 2015;16(Suppl. 5):S5. doi: 10.1186/1471-2164-16-S5-S5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poplawski SG, Schoch H, Wimmer ME, Hawk JD, Walsh JL, Giese KP, Abel T. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning. Neurobiology of Learning and Memory. 2014;116:90–95. doi: 10.1016/j.nlm.2014.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: Recent insights into mechanisms and functional roles. Neuron. 2015;87:14–27. doi: 10.1016/j.neuron.2015.05.004. [DOI] [PubMed] [Google Scholar]
  32. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nature Biotechnology. 2014;32:896–902. doi: 10.1038/nbt.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43:e47. doi: 10.1093/nar/gkv007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rogelj B, Hartmann CE, Yeo CH, Hunt SP, Giese KP. Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. The European Journal of Neuroscience. 2003;18:3089–3096. doi: 10.1111/j.1460-9568.2003.03026.x. [DOI] [PubMed] [Google Scholar]
  36. Rozic G, Lupowitz Z, Piontkewitz Y, Zisapel N. Dynamic changes in neurexins’ alternative splicing: Role of Rho-associated protein kinases and relevance to memory formation. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0018579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Wood MA. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience. 2007;27:6128–6140. doi: 10.1523/JNEUROSCI.0296-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vecsey CG, Peixoto L, Choi JH, Wimmer M, Jaganath D, Hernandez PJ, Abel T. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiological Genomics. 2012;44:981–991. doi: 10.1152/physiolgenomics.00084.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang Q, Chikina MD, Pincas H, Sealfon SC. Homer1 alternative splicing is regulated by gonadotropin-releasing hormone and modulates gonadotropin gene expression. Molecular and Cellular Biology. 2014;34:1747–1756. doi: 10.1128/MCB.01401-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–476. doi: 10.1038/nature07509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–881. doi: 10.1093/bioinformatics/btq057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Journal of Neuroscience. 2014;34:11929–11947. doi: 10.1523/JNEUROSCI.1860-14.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: Potential roles for RNA-guided mechanisms. Nucleic Acids Research. 2014;42:701–713. doi: 10.1093/nar/gkt875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhu S, Wang G, Liu B, Wang Y. Modeling exon expression using histone modifications. PLoS ONE. 2013;8:e67448. doi: 10.1371/journal.pone.0067448. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES