Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Nov 1;89(21):10193–10197. doi: 10.1073/pnas.89.21.10193

Homocysteine and other sulfhydryl compounds enhance the binding of lipoprotein(a) to fibrin: a potential biochemical link between thrombosis, atherogenesis, and sulfhydryl compound metabolism.

P C Harpel 1, V T Chang 1, W Borth 1
PMCID: PMC50304  PMID: 1438209

Abstract

We have previously shown that lipoprotein(a) [Lp(a)], an atherogenic lipoprotein that contains apolipoprotein(a), which shares partial structural homology to plasminogen, binds to a plasmin-modified fibrin surface, and we have postulated that this interaction may be atherogenic. Moderate elevations in blood homocysteine, a relatively common condition, predispose to premature atherosclerosis. The reasons for this are not established. We now report that homocysteine, at concentrations as low as 8 microM, significantly increases the affinity of Lp(a) for fibrin. Homocysteine induces a 20-fold increase in the affinity between Lp(a) and plasmin-treated fibrin and a 4-fold increase with unmodified fibrin. Lp(a) binding is inhibited by epsilon-aminocaproic acid, indicating lysine binding site specificity. Homocysteine does not enhance the binding of Lp(a) to other surface-bound proteins. Cysteine, glutathione, and N-acetylcysteine also increase the affinity between Lp(a) and fibrin. Homocysteine does not affect the binding of low density lipoprotein or plasminogen to fibrin, nor does it alter the gel-filtration elution pattern of Lp(a). Immunoblot analysis documents the fact that homocysteine partially reduces Lp(a). These results suggest that homocysteine alters the intact Lp(a) particle so as to increase the reactivity of the plasminogen-like apolipoprotein(a) portion of the molecule. The observation that sulfhydryl amino acids increase Lp(a) binding to fibrin suggests a biochemical relationship between sulfhydryl compound metabolism, thrombosis, and atherogenesis.

Full text

PDF
10193

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong V. W., Walli A. K., Seidel D. Isolation, characterization, and uptake in human fibroblasts of an apo(a)-free lipoprotein obtained on reduction of lipoprotein(a). J Lipid Res. 1985 Nov;26(11):1314–1323. [PubMed] [Google Scholar]
  2. BERG K. A NEW SERUM TYPE SYSTEM IN MAN--THE LP SYSTEM. Acta Pathol Microbiol Scand. 1963;59:369–382. doi: 10.1111/j.1699-0463.1963.tb01808.x. [DOI] [PubMed] [Google Scholar]
  3. Boers G. H., Smals A. G., Trijbels F. J., Fowler B., Bakkeren J. A., Schoonderwaldt H. C., Kleijer W. J., Kloppenborg P. W. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med. 1985 Sep 19;313(12):709–715. doi: 10.1056/NEJM198509193131201. [DOI] [PubMed] [Google Scholar]
  4. Borth W., Chang V., Bishop P., Harpel P. C. Lipoprotein (a) is a substrate for factor XIIIa and tissue transglutaminase. J Biol Chem. 1991 Sep 25;266(27):18149–18153. [PubMed] [Google Scholar]
  5. Brown M. S., Goldstein J. L. Plasma lipoproteins: teaching old dogmas new tricks. Nature. 1987 Nov 12;330(6144):113–114. doi: 10.1038/330113a0. [DOI] [PubMed] [Google Scholar]
  6. Clarke R., Daly L., Robinson K., Naughten E., Cahalane S., Fowler B., Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991 Apr 25;324(17):1149–1155. doi: 10.1056/NEJM199104253241701. [DOI] [PubMed] [Google Scholar]
  7. Coull B. M., Malinow M. R., Beamer N., Sexton G., Nordt F., de Garmo P. Elevated plasma homocyst(e)ine concentration as a possible independent risk factor for stroke. Stroke. 1990 Apr;21(4):572–576. doi: 10.1161/01.str.21.4.572. [DOI] [PubMed] [Google Scholar]
  8. Cushing G. L., Gaubatz J. W., Nava M. L., Burdick B. J., Bocan T. M., Guyton J. R., Weilbaecher D., DeBakey M. E., Lawrie G. M., Morrisett J. D. Quantitation and localization of apolipoproteins [a] and B in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis. 1989 Sep-Oct;9(5):593–603. doi: 10.1161/01.atv.9.5.593. [DOI] [PubMed] [Google Scholar]
  9. Eaton D. L., Fless G. M., Kohr W. J., McLean J. W., Xu Q. T., Miller C. G., Lawn R. M., Scanu A. M. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen. Proc Natl Acad Sci U S A. 1987 May;84(10):3224–3228. doi: 10.1073/pnas.84.10.3224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonzalez-Gronow M., Edelberg J. M., Pizzo S. V. Further characterization of the cellular plasminogen binding site: evidence that plasminogen 2 and lipoprotein a compete for the same site. Biochemistry. 1989 Mar 21;28(6):2374–2377. doi: 10.1021/bi00432a005. [DOI] [PubMed] [Google Scholar]
  11. Graeber J. E., Slott J. H., Ulane R. E., Schulman J. D., Stuart M. J. Effect of homocysteine and homocystine on platelet and vascular arachidonic acid metabolism. Pediatr Res. 1982 Jun;16(6):490–493. doi: 10.1203/00006450-198206000-00018. [DOI] [PubMed] [Google Scholar]
  12. Hajjar K. A., Gavish D., Breslow J. L., Nachman R. L. Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature. 1989 May 25;339(6222):303–305. doi: 10.1038/339303a0. [DOI] [PubMed] [Google Scholar]
  13. Harker L. A., Harlan J. M., Ross R. Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons. Circ Res. 1983 Dec;53(6):731–739. doi: 10.1161/01.res.53.6.731. [DOI] [PubMed] [Google Scholar]
  14. Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harpel P. C. Alpha2-plasmin inhibitor and alpha2-macroglobulin-plasmin complexes in plasma. Quantitation by an enzyme-linked differential antibody immunosorbent assay. J Clin Invest. 1981 Jul;68(1):46–55. doi: 10.1172/JCI110253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harpel P. C., Chang T. S., Verderber E. Tissue plasminogen activator and urokinase mediate the binding of Glu-plasminogen to plasma fibrin I. Evidence for new binding sites in plasmin-degraded fibrin I. J Biol Chem. 1985 Apr 10;260(7):4432–4440. [PubMed] [Google Scholar]
  17. Harpel P. C., Gordon B. R., Parker T. S. Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proc Natl Acad Sci U S A. 1989 May;86(10):3847–3851. doi: 10.1073/pnas.86.10.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heinecke J. W., Rosen H., Suzuki L. A., Chait A. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem. 1987 Jul 25;262(21):10098–10103. [PubMed] [Google Scholar]
  19. Hoff H. F., Beck G. J., Skibinski C. I., Jürgens G., O'Neil J., Kramer J., Lytle B. Serum Lp(a) level as a predictor of vein graft stenosis after coronary artery bypass surgery in patients. Circulation. 1988 Jun;77(6):1238–1244. doi: 10.1161/01.cir.77.6.1238. [DOI] [PubMed] [Google Scholar]
  20. Jürgens G., Költringer P. Lipoprotein(a) in ischemic cerebrovascular disease: a new approach to the assessment of risk for stroke. Neurology. 1987 Mar;37(3):513–515. doi: 10.1212/wnl.37.3.513. [DOI] [PubMed] [Google Scholar]
  21. Koschinsky M. L., Beisiegel U., Henne-Bruns D., Eaton D. L., Lawn R. M. Apolipoprotein(a) size heterogeneity is related to variable number of repeat sequences in its mRNA. Biochemistry. 1990 Jan 23;29(3):640–644. doi: 10.1021/bi00455a007. [DOI] [PubMed] [Google Scholar]
  22. Loscalzo J., Weinfeld M., Fless G. M., Scanu A. M. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis. 1990 Mar-Apr;10(2):240–245. doi: 10.1161/01.atv.10.2.240. [DOI] [PubMed] [Google Scholar]
  23. MCFARLANE A. S. Labelling of plasma proteins with radioactive iodine. Biochem J. 1956 Jan;62(1):135–143. doi: 10.1042/bj0620135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malinow M. R., Kang S. S., Taylor L. M., Wong P. W., Coull B., Inahara T., Mukerjee D., Sexton G., Upson B. Prevalence of hyperhomocyst(e)inemia in patients with peripheral arterial occlusive disease. Circulation. 1989 Jun;79(6):1180–1188. doi: 10.1161/01.cir.79.6.1180. [DOI] [PubMed] [Google Scholar]
  25. McCully K. S., Carvalho A. C. Homocysteine thiolactone, N-homocysteine thiolactonyl retinamide, and platelet aggregation. Res Commun Chem Pathol Pharmacol. 1987 Jun;56(3):349–360. [PubMed] [Google Scholar]
  26. McLean J. W., Tomlinson J. E., Kuang W. J., Eaton D. L., Chen E. Y., Fless G. M., Scanu A. M., Lawn R. M. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987 Nov 12;330(6144):132–137. doi: 10.1038/330132a0. [DOI] [PubMed] [Google Scholar]
  27. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988 Nov 25;263(33):17205–17208. [PubMed] [Google Scholar]
  28. Miles L. A., Fless G. M., Levin E. G., Scanu A. M., Plow E. F. A potential basis for the thrombotic risks associated with lipoprotein(a). Nature. 1989 May 25;339(6222):301–303. doi: 10.1038/339301a0. [DOI] [PubMed] [Google Scholar]
  29. Murai A., Miyahara T., Fujimoto N., Matsuda M., Kameyama M. Lp(a) lipoprotein as a risk factor for coronary heart disease and cerebral infarction. Atherosclerosis. 1986 Feb;59(2):199–204. doi: 10.1016/0021-9150(86)90048-1. [DOI] [PubMed] [Google Scholar]
  30. Niendorf A., Rath M., Wolf K., Peters S., Arps H., Beisiegel U., Dietel M. Morphological detection and quantification of lipoprotein(a) deposition in atheromatous lesions of human aorta and coronary arteries. Virchows Arch A Pathol Anat Histopathol. 1990;417(2):105–111. doi: 10.1007/BF02190527. [DOI] [PubMed] [Google Scholar]
  31. Panganamala R. V., Karpen C. W., Merola A. J. Peroxide mediated effects of homocysteine on arterial prostacyclin synthesis. Prostaglandins Leukot Med. 1986 Jun;22(3):349–356. doi: 10.1016/0262-1746(86)90145-9. [DOI] [PubMed] [Google Scholar]
  32. Parthasarathy S. Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochim Biophys Acta. 1987 Feb 14;917(2):337–340. doi: 10.1016/0005-2760(87)90139-1. [DOI] [PubMed] [Google Scholar]
  33. Pepin J. M., O'Neil J. A., Hoff H. F. Quantification of apo[a] and apoB in human atherosclerotic lesions. J Lipid Res. 1991 Feb;32(2):317–327. [PubMed] [Google Scholar]
  34. Rath M., Niendorf A., Reblin T., Dietel M., Krebber H. J., Beisiegel U. Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis. 1989 Sep-Oct;9(5):579–592. doi: 10.1161/01.atv.9.5.579. [DOI] [PubMed] [Google Scholar]
  35. Rhoads G. G., Dahlen G., Berg K., Morton N. E., Dannenberg A. L. Lp(a) lipoprotein as a risk factor for myocardial infarction. JAMA. 1986 Nov 14;256(18):2540–2544. [PubMed] [Google Scholar]
  36. Rodgers G. M., Conn M. T. Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells. Blood. 1990 Feb 15;75(4):895–901. [PubMed] [Google Scholar]
  37. Rodgers G. M., Kane W. H. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest. 1986 Jun;77(6):1909–1916. doi: 10.1172/JCI112519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rouy D., Grailhe P., Nigon F., Chapman J., Anglés-Cano E. Lipoprotein(a) impairs generation of plasmin by fibrin-bound tissue-type plasminogen activator. In vitro studies in a plasma milieu. Arterioscler Thromb. 1991 May-Jun;11(3):629–638. doi: 10.1161/01.atv.11.3.629. [DOI] [PubMed] [Google Scholar]
  39. Seed M., Hoppichler F., Reaveley D., McCarthy S., Thompson G. R., Boerwinkle E., Utermann G. Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia. N Engl J Med. 1990 May 24;322(21):1494–1499. doi: 10.1056/NEJM199005243222104. [DOI] [PubMed] [Google Scholar]
  40. Smith E. B., Cochran S. Factors influencing the accumulation in fibrous plaques of lipid derived from low density lipoprotein. II. Preferential immobilization of lipoprotein (a) (Lp(a)). Atherosclerosis. 1990 Oct;84(2-3):173–181. doi: 10.1016/0021-9150(90)90088-z. [DOI] [PubMed] [Google Scholar]
  41. Starkebaum G., Harlan J. M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest. 1986 Apr;77(4):1370–1376. doi: 10.1172/JCI112442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ueland P. M., Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med. 1989 Nov;114(5):473–501. [PubMed] [Google Scholar]
  43. Wall R. T., Harlan J. M., Harker L. A., Striker G. E. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res. 1980 Apr 1;18(1-2):113–121. doi: 10.1016/0049-3848(80)90175-9. [DOI] [PubMed] [Google Scholar]
  44. Zenker G., Költringer P., Boné G., Niederkorn K., Pfeiffer K., Jürgens G. Lipoprotein(a) as a strong indicator for cerebrovascular disease. Stroke. 1986 Sep-Oct;17(5):942–945. doi: 10.1161/01.str.17.5.942. [DOI] [PubMed] [Google Scholar]
  45. de Groot P. G., Willems C., Boers G. H., Gonsalves M. D., van Aken W. G., van Mourik J. A. Endothelial cell dysfunction in homocystinuria. Eur J Clin Invest. 1983 Oct;13(5):405–410. doi: 10.1111/j.1365-2362.1983.tb00121.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES