Abstract
We inoculated rabbits with synthetic phosphopeptides, duplicating a major autophosphorylation site of the c-erbB-2 protooncogene product. The rabbits produced antisera that, after reverse immunoaffinity purification, selectively recognize the erbB-2 protein in its enzymatically active configuration. These anti-phosphopeptide antisera identify a subset of erbB-2-positive human cell lines wherein the protein is constitutively active as a tyrosine kinase. Synthetic phosphopeptides incorporating informative protein phosphorylation sites may prove useful for generating antibodies that indicate the activation state of additional tyrosine kinases and perhaps other proteins phosphorylated on serine and threonine residues.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Matsuda S., Namba Y., Saito T., Toyoshima K., Yamamoto T. The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol Cell Biol. 1991 Feb;11(2):833–842. doi: 10.1128/mcb.11.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartkova J., Barnes D. M., Millis R. R., Gullick W. J. Immunohistochemical demonstration of c-erbB-2 protein in mammary ductal carcinoma in situ. Hum Pathol. 1990 Nov;21(11):1164–1167. doi: 10.1016/0046-8177(90)90154-w. [DOI] [PubMed] [Google Scholar]
- Berger M. S., Locher G. W., Saurer S., Gullick W. J., Waterfield M. D., Groner B., Hynes N. E. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res. 1988 Mar 1;48(5):1238–1243. [PubMed] [Google Scholar]
- Borg A., Linell F., Idvall I., Johansson S., Sigurdsson H., Fernö M., Killander D. HER2/neu amplification and comedo type breast carcinoma. Lancet. 1989 Jun 3;1(8649):1268–1269. doi: 10.1016/s0140-6736(89)92365-9. [DOI] [PubMed] [Google Scholar]
- Borg A., Tandon A. K., Sigurdsson H., Clark G. M., Fernö M., Fuqua S. A., Killander D., McGuire W. L. HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res. 1990 Jul 15;50(14):4332–4337. [PubMed] [Google Scholar]
- Brown-Shimer S., Johnson K. A., Hill D. E., Bruskin A. M. Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res. 1992 Jan 15;52(2):478–482. [PubMed] [Google Scholar]
- Campos-González R., Glenney J. R., Jr Immunodetection of the ligand-activated receptor for epidermal growth factor. Growth Factors. 1991;4(4):305–316. doi: 10.3109/08977199109043916. [DOI] [PubMed] [Google Scholar]
- Cao H., Decker S., Stern D. F. TPA inhibits the tyrosine kinase activity of the neu protein in vivo and in vitro. Oncogene. 1991 May;6(5):705–711. [PubMed] [Google Scholar]
- Cohen J. A., Weiner D. B., More K. F., Kokai Y., Williams W. V., Maguire H. C., Jr, LiVolsi V. A., Greene M. I. Expression pattern of the neu (NGL) gene-encoded growth factor receptor protein (p185neu) in normal and transformed epithelial tissues of the digestive tract. Oncogene. 1989 Jan;4(1):81–88. [PubMed] [Google Scholar]
- Czernik A. J., Girault J. A., Nairn A. C., Chen J., Snyder G., Kebabian J., Greengard P. Production of phosphorylation state-specific antibodies. Methods Enzymol. 1991;201:264–283. doi: 10.1016/0076-6879(91)01025-w. [DOI] [PubMed] [Google Scholar]
- Downing J. R., Shurtleff S. A., Sherr C. J. Peptide antisera to human colony-stimulating factor 1 receptor detect ligand-induced conformational changes and a binding site for phosphatidylinositol 3-kinase. Mol Cell Biol. 1991 May;11(5):2489–2495. doi: 10.1128/mcb.11.5.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein R. J., Druker B. J., Roberts T. M., Stiles C. D. Modulation of a Mr 175,000 c-neu receptor isoform in G8/DHFR cells by serum starvation. J Biol Chem. 1990 Jun 25;265(18):10746–10751. [PubMed] [Google Scholar]
- Gullick W. J., Berger M. S., Bennett P. L., Rothbard J. B., Waterfield M. D. Expression of the c-erbB-2 protein in normal and transformed cells. Int J Cancer. 1987 Aug 15;40(2):246–254. doi: 10.1002/ijc.2910400221. [DOI] [PubMed] [Google Scholar]
- Gullick W. J., Downward J., Waterfield M. D. Antibodies to the autophosphorylation sites of the epidermal growth factor receptor protein-tyrosine kinase as probes of structure and function. EMBO J. 1985 Nov;4(11):2869–2877. doi: 10.1002/j.1460-2075.1985.tb04016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gusterson B. A., Machin L. G., Gullick W. J., Gibbs N. M., Powles T. J., Price P., McKinna A., Harrison S. Immunohistochemical distribution of c-erbB-2 in infiltrating and in situ breast cancer. Int J Cancer. 1988 Dec 15;42(6):842–845. doi: 10.1002/ijc.2910420608. [DOI] [PubMed] [Google Scholar]
- Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
- Hazan R., Margolis B., Dombalagian M., Ullrich A., Zilberstein A., Schlessinger J. Identification of autophosphorylation sites of HER2/neu. Cell Growth Differ. 1990 Jan;1(1):3–7. [PubMed] [Google Scholar]
- Hu Q. J., Bautista C., Edwards G. M., Defeo-Jones D., Jones R. E., Harlow E. Antibodies specific for the human retinoblastoma protein identify a family of related polypeptides. Mol Cell Biol. 1991 Nov;11(11):5792–5799. doi: 10.1128/mcb.11.11.5792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iglehart J. D., Kraus M. H., Langton B. C., Huper G., Kerns B. J., Marks J. R. Increased erbB-2 gene copies and expression in multiple stages of breast cancer. Cancer Res. 1990 Oct 15;50(20):6701–6707. [PubMed] [Google Scholar]
- Jallal B., Schlessinger J., Ullrich A. Tyrosine phosphatase inhibition permits analysis of signal transduction complexes in p185HER2/neu-overexpressing human tumor cells. J Biol Chem. 1992 Mar 5;267(7):4357–4363. [PubMed] [Google Scholar]
- Kadowaki T., Kasuga M., Tobe K., Takaku F., Nishida E., Sakai H., Koyasu S., Yahara I., Toyoshima K., Yamamoto T. A Mr = 190,000 glycoprotein phosphorylated on tyrosine residues in epidermal growth factor stimulated KB cells is the product of the c-erbB-2 gene. Biochem Biophys Res Commun. 1987 Apr 29;144(2):699–704. doi: 10.1016/s0006-291x(87)80021-9. [DOI] [PubMed] [Google Scholar]
- Keating M. T., Escobedo J. A., Williams L. T. Ligand activation causes a phosphorylation-dependent change in platelet-derived growth factor receptor conformation. J Biol Chem. 1988 Sep 15;263(26):12805–12808. [PubMed] [Google Scholar]
- King C. R., Borrello I., Bellot F., Comoglio P., Schlessinger J. Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. EMBO J. 1988 Jun;7(6):1647–1651. doi: 10.1002/j.1460-2075.1988.tb02991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemoine N. R., Staddon S., Dickson C., Barnes D. M., Gullick W. J. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene. 1990 Feb;5(2):237–239. [PubMed] [Google Scholar]
- Margolis B. L., Lax I., Kris R., Dombalagian M., Honegger A. M., Howk R., Givol D., Ullrich A., Schlessinger J. All autophosphorylation sites of epidermal growth factor (EGF) receptor and HER2/neu are located in their carboxyl-terminal tails. Identification of a novel site in EGF receptor. J Biol Chem. 1989 Jun 25;264(18):10667–10671. [PubMed] [Google Scholar]
- O'Reilly S. M., Barnes D. M., Camplejohn R. S., Bartkova J., Gregory W. M., Richards M. A. The relationship between c-erbB-2 expression, S-phase fraction and prognosis in breast cancer. Br J Cancer. 1991 Mar;63(3):444–446. doi: 10.1038/bjc.1991.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson M. C., Dietrich K. D., Danyluk J., Paterson A. H., Lees A. W., Jamil N., Hanson J., Jenkins H., Krause B. E., McBlain W. A. Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res. 1991 Jan 15;51(2):556–567. [PubMed] [Google Scholar]
- Rilke F., Colnaghi M. I., Cascinelli N., Andreola S., Baldini M. T., Bufalino R., Della Porta G., Ménard S., Pierotti M. A., Testori A. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer. 1991 Aug 19;49(1):44–49. doi: 10.1002/ijc.2910490109. [DOI] [PubMed] [Google Scholar]
- Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., McGuire W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177–182. doi: 10.1126/science.3798106. [DOI] [PubMed] [Google Scholar]
- Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989 May 12;244(4905):707–712. doi: 10.1126/science.2470152. [DOI] [PubMed] [Google Scholar]
- Stern D. F., Kamps M. P. EGF-stimulated tyrosine phosphorylation of p185neu: a potential model for receptor interactions. EMBO J. 1988 Apr;7(4):995–1001. doi: 10.1002/j.1460-2075.1988.tb02906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J. Y. Isolation of antibodies for phosphotyrosine by immunization with a v-abl oncogene-encoded protein. Mol Cell Biol. 1985 Dec;5(12):3640–3643. doi: 10.1128/mcb.5.12.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner D. B., Liu J., Cohen J. A., Williams W. V., Greene M. I. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 1989 May 18;339(6221):230–231. doi: 10.1038/339230a0. [DOI] [PubMed] [Google Scholar]