Abstract
GRO alpha and neutrophil-activating peptide 2 (NAP-2), like their analog interleukin 8 (IL-8), are considered to be inflammatory mediators since they recruit and activate neutrophil leukocytes. After introduction of tyrosines by substitution for other residues at the C terminus, GRO alpha and NAP-2 were labeled with 125I and used for binding studies. A total of 60,000-90,000 receptors per neutrophil were found for either ligand. Of these 30-45% were of high affinity with a mean Kd value of 0.3 and 0.7 nM for GRO alpha and NAP-2, respectively, and 55-70% of low affinity (Kd = 30 nM). Two proteins of approximately 70 kDa and 44 kDa (p70 and p44) were specifically cross-linked with labeled GRO alpha, NAP-2, and IL-8. Unlabeled IL-8 fully inhibited this cross-linking and the binding of labeled GRO alpha or NAP-2 to the high-affinity sites on neutrophils or neutrophil membranes. Treatment of membranes with digitonin resulted in the preferential solubilization of a single receptor species, corresponding to p44, that bound GRO alpha and NAP-2 with low affinity (Kd = 30 nM) and IL-8 with high affinity (Kd = 0.4 nM). Exposure of neutrophil membranes to 100 microM guanosine 5'-[gamma-thio]triphosphate led to a 75-fold increase of the Kd in approximately 60% of the IL-8 receptors. High-affinity receptors for GRO alpha and NAP-2 were similarly affected. In contrast, guanosine 5'-[gamma-thio]triphosphate had no effect on the binding of IL-8 to p44 solubilized by digitonin. These results demonstrate that human neutrophils bear two classes of receptors for GRO alpha, NAP-2, and IL-8 (p70 and p44) that may differ in their mode of interaction with GTP regulatory proteins.
Full text
PDF![10542](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3378/50375/fae6eed69e65/pnas01095-0577.png)
![10543](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3378/50375/e7aaeca3e041/pnas01095-0578.png)
![10544](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3378/50375/3a64a9fa7e88/pnas01095-0579.png)
![10545](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3378/50375/bf7d97b53aaa/pnas01095-0580.png)
![10546](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3378/50375/84a2f1fcb194/pnas01095-0581.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anisowicz A., Zajchowski D., Stenman G., Sager R. Functional diversity of gro gene expression in human fibroblasts and mammary epithelial cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9645–9649. doi: 10.1073/pnas.85.24.9645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baggiolini M., Imboden P., Detmers P. Neutrophil activation and the effects of interleukin-8/neutrophil-activating peptide 1 (IL-8/NAP-1). Cytokines. 1992;4:1–17. [PubMed] [Google Scholar]
- Baggiolini M., Walz A., Kunkel S. L. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 1989 Oct;84(4):1045–1049. doi: 10.1172/JCI114265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besemer J., Hujber A., Kuhn B. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes. J Biol Chem. 1989 Oct 15;264(29):17409–17415. [PubMed] [Google Scholar]
- Clark-Lewis I., Moser B., Walz A., Baggiolini M., Scott G. J., Aebersold R. Chemical synthesis, purification, and characterization of two inflammatory proteins, neutrophil activating peptide 1 (interleukin-8) and neutrophil activating peptide. Biochemistry. 1991 Mar 26;30(12):3128–3135. doi: 10.1021/bi00226a021. [DOI] [PubMed] [Google Scholar]
- Clark-Lewis I., Schumacher C., Baggiolini M., Moser B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem. 1991 Dec 5;266(34):23128–23134. [PubMed] [Google Scholar]
- Gierschik P., Sidiropoulos D., Jakobs K. H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem. 1989 Dec 25;264(36):21470–21473. [PubMed] [Google Scholar]
- Grob P. M., David E., Warren T. C., DeLeon R. P., Farina P. R., Homon C. A. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8. J Biol Chem. 1990 May 15;265(14):8311–8316. [PubMed] [Google Scholar]
- Holmes W. E., Lee J., Kuang W. J., Rice G. C., Wood W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1278–1280. doi: 10.1126/science.1840701. [DOI] [PubMed] [Google Scholar]
- Moser B., Clark-Lewis I., Zwahlen R., Baggiolini M. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J Exp Med. 1990 May 1;171(5):1797–1802. doi: 10.1084/jem.171.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moser B., Schumacher C., von Tscharner V., Clark-Lewis I., Baggiolini M. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J Biol Chem. 1991 Jun 5;266(16):10666–10671. [PubMed] [Google Scholar]
- Murphy P. M., Tiffany H. L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1280–1283. doi: 10.1126/science.1891716. [DOI] [PubMed] [Google Scholar]
- Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
- Peveri P., Walz A., Dewald B., Baggiolini M. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med. 1988 May 1;167(5):1547–1559. doi: 10.1084/jem.167.5.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richmond A., Balentien E., Thomas H. G., Flaggs G., Barton D. E., Spiess J., Bordoni R., Francke U., Derynck R. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin. EMBO J. 1988 Jul;7(7):2025–2033. doi: 10.1002/j.1460-2075.1988.tb03042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rollins T. E., Siciliano S., Springer M. S. Solubilization of the functional C5a receptor from human polymorphonuclear leukocytes. J Biol Chem. 1988 Jan 5;263(1):520–526. [PubMed] [Google Scholar]
- Samanta A. K., Oppenheim J. J., Matsushima K. Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J Exp Med. 1989 Mar 1;169(3):1185–1189. doi: 10.1084/jem.169.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samanta A. K., Oppenheim J. J., Matsushima K. Interleukin 8 (monocyte-derived neutrophil chemotactic factor) dynamically regulates its own receptor expression on human neutrophils. J Biol Chem. 1990 Jan 5;265(1):183–189. [PubMed] [Google Scholar]
- Siciliano S. J., Rollins T. E., Springer M. S. Interaction between the C5a receptor and Gi in both the membrane-bound and detergent-solubilized states. J Biol Chem. 1990 Nov 15;265(32):19568–19574. [PubMed] [Google Scholar]
- Snyderman R., Pike M. C., Edge S., Lane B. A chemoattractant receptor on macrophages exists in two affinity states regulated by guanine nucleotides. J Cell Biol. 1984 Feb;98(2):444–448. doi: 10.1083/jcb.98.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoeckle M. Y., Barker K. A. Two burgeoning families of platelet factor 4-related proteins: mediators of the inflammatory response. New Biol. 1990 Apr;2(4):313–323. [PubMed] [Google Scholar]
- Thelen M., Peveri P., Kernen P., von Tscharner V., Walz A., Baggiolini M. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J. 1988 Aug;2(11):2702–2706. [PubMed] [Google Scholar]
- Walz A., Dewald B., von Tscharner V., Baggiolini M. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J Exp Med. 1989 Nov 1;170(5):1745–1750. doi: 10.1084/jem.170.5.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walz A., Meloni F., Clark-Lewis I., von Tscharner V., Baggiolini M. [Ca2+]i changes and respiratory burst in human neutrophils and monocytes induced by NAP-1/interleukin-8, NAP-2, and gro/MGSA. J Leukoc Biol. 1991 Sep;50(3):279–286. doi: 10.1002/jlb.50.3.279. [DOI] [PubMed] [Google Scholar]
- Weingarten R., Bokoch G. M. GTP binding proteins and signal transduction in the human neutrophil. Immunol Lett. 1990 Oct;26(1):1–6. doi: 10.1016/0165-2478(90)90167-o. [DOI] [PubMed] [Google Scholar]