Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Nov 15;89(22):10676–10680. doi: 10.1073/pnas.89.22.10676

Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts.

T T Yang 1, S P Hawkes 1
PMCID: PMC50404  PMID: 1438264

Abstract

The 21-kDa protein is an extracellular matrix (ECM) component whose synthesis is stimulated transiently during oncogenic transformation of chicken embryo fibroblasts (CEF) or after treatment of normal cells with the tumor promoter phorbol 12-myristate 13-acetate. Biochemical characterization indicates that the protein is related, but not identical, to two members of the family of tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. The cDNA of the 21-kDa protein was recently cloned, and based upon its deduced amino acid sequence and other supporting data we propose that it is another member of this family, a TIMP-3. We now report electrophoretic purification of sufficient quantities of this protein to determine its function. The protein promotes the detachment of transforming cells from the ECM. Although its presence in the matrix may be necessary for cell release it is not the only factor involved because it does not influence the adhesive properties of nontransformed cells. It also appears to accelerate the morphological changes associated with cell transformation and stimulates the proliferation of growth-retarded, nontransformed cells maintained under low serum conditions. Based on these data we hypothesize that the 21-kDa protein promotes the development of the transformed phenotype in cultured cells.

Full text

PDF
10676

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abatangelo G., Cortivo R., Martelli M., Vecchia P. Cell detachment mediated by hyaluronic acid. Exp Cell Res. 1982 Jan;137(1):73–78. doi: 10.1016/0014-4827(82)90009-x. [DOI] [PubMed] [Google Scholar]
  2. Avalos B. R., Kaufman S. E., Tomonaga M., Williams R. E., Golde D. W., Gasson J. C. K562 cells produce and respond to human erythroid-potentiating activity. Blood. 1988 Jun;71(6):1720–1725. [PubMed] [Google Scholar]
  3. Bertaux B., Hornebeck W., Courtalon A., Lebreton C., Dubertret L. Stimulation de la croissance épidermique dans la peau équivalente par l'inhibiteur tissulaire des métalloprotéinases. Pathol Biol (Paris) 1990 Dec;38(10):1029–1033. [PubMed] [Google Scholar]
  4. Bertaux B., Hornebeck W., Eisen A. Z., Dubertret L. Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol. 1991 Oct;97(4):679–685. doi: 10.1111/1523-1747.ep12483956. [DOI] [PubMed] [Google Scholar]
  5. Blenis J., Hawkes S. P. Characterization of a transformation-sensitive protein in the extracellular matrix of chicken embryo fibroblasts. J Biol Chem. 1984 Sep 25;259(18):11563–11570. [PubMed] [Google Scholar]
  6. Blenis J., Hawkes S. P. Transformation-sensitive protein associated with the cell substratum of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1983 Feb;80(3):770–774. doi: 10.1073/pnas.80.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen J. M., Chen W. T. Fibronectin-degrading proteases from the membranes of transformed cells. Cell. 1987 Jan 30;48(2):193–203. doi: 10.1016/0092-8674(87)90423-5. [DOI] [PubMed] [Google Scholar]
  8. Chen W. T., Chen J. M., Parsons S. J., Parsons J. T. Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature. 1985 Jul 11;316(6024):156–158. doi: 10.1038/316156a0. [DOI] [PubMed] [Google Scholar]
  9. Cook J. R., Chen J. K. Enhancement of transformed cell growth in agar by serine protease inhibitors. J Cell Physiol. 1988 Jul;136(1):188–193. doi: 10.1002/jcp.1041360125. [DOI] [PubMed] [Google Scholar]
  10. Docherty A. J., Lyons A., Smith B. J., Wright E. M., Stephens P. E., Harris T. J., Murphy G., Reynolds J. J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature. 1985 Nov 7;318(6041):66–69. doi: 10.1038/318066a0. [DOI] [PubMed] [Google Scholar]
  11. Golde D. W., Bersch N., Quan S. G., Lusis A. J. Production of erythroid-potentiating activity by a human T-lymphoblast cell line. Proc Natl Acad Sci U S A. 1980 Jan;77(1):593–596. doi: 10.1073/pnas.77.1.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gospodarowicz D., Delgado D., Vlodavsky I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4094–4098. doi: 10.1073/pnas.77.7.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guillem J. G., Levy M. F., Hsieh L. L., Johnson M. D., LoGerfo P., Forde K. A., Weinstein I. B. Increased levels of phorbin, c-myc, and ornithine decarboxylase RNAs in human colon cancer. Mol Carcinog. 1990;3(2):68–74. doi: 10.1002/mc.2940030204. [DOI] [PubMed] [Google Scholar]
  14. Jones P. A., DeClerck Y. A. Destruction of extracellular matrices containing glycoproteins, elastin, and collagen by metastatic human tumor cells. Cancer Res. 1980 Sep;40(9):3222–3227. [PubMed] [Google Scholar]
  15. Kao R. T., Stern R. Collagenases in human breast carcinoma cell lines. Cancer Res. 1986 Mar;46(3):1349–1354. [PubMed] [Google Scholar]
  16. Kishi J., Hayakawa T. Purification and characterization of bovine dental pulp collagenase inhibitor. J Biochem. 1984 Aug;96(2):395–404. doi: 10.1093/oxfordjournals.jbchem.a134850. [DOI] [PubMed] [Google Scholar]
  17. Kossakowska A. E., Urbanski S. J., Edwards D. R. Tissue inhibitor of metalloproteinases-1 (TIMP-1) RNA is expressed at elevated levels in malignant non-Hodgkin's lymphomas. Blood. 1991 Jun 1;77(11):2475–2481. [PubMed] [Google Scholar]
  18. Kramer R. H., Bensch K. G., Wong J. Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res. 1986 Apr;46(4 Pt 2):1980–1989. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Liotta L. A., Rao C. N., Barsky S. H. Tumor invasion and the extracellular matrix. Lab Invest. 1983 Dec;49(6):636–649. [PubMed] [Google Scholar]
  21. Lochter A., Vaughan L., Kaplony A., Prochiantz A., Schachner M., Faissner A. J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. J Cell Biol. 1991 Jun;113(5):1159–1171. doi: 10.1083/jcb.113.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lu X. Q., Levy M., Weinstein I. B., Santella R. M. Immunological quantitation of levels of tissue inhibitor of metalloproteinase-1 in human colon cancer. Cancer Res. 1991 Dec 1;51(23 Pt 1):6231–6235. [PubMed] [Google Scholar]
  23. McKeehan W. L., Sakagami Y., Hoshi H., McKeehan K. A. Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. J Biol Chem. 1986 Apr 25;261(12):5378–5383. [PubMed] [Google Scholar]
  24. McLaughlin B., Cawston T., Weiss J. B. Activation of the matrix metalloproteinase inhibitor complex by a low molecular weight angiogenic factor. Biochim Biophys Acta. 1991 Mar 4;1073(2):295–298. doi: 10.1016/0304-4165(91)90134-3. [DOI] [PubMed] [Google Scholar]
  25. Moll U. M., Lane B., Zucker S., Suzuki K., Nagase H. Localization of collagenase at the basal plasma membrane of a human pancreatic carcinoma cell line. Cancer Res. 1990 Nov 1;50(21):6995–7002. [PubMed] [Google Scholar]
  26. Murphy G., Reynolds J. J., Werb Z. Biosynthesis of tissue inhibitor of metalloproteinases by human fibroblasts in culture. Stimulation by 12-O-tetradecanoylphorbol 13-acetate and interleukin 1 in parallel with collagenase. J Biol Chem. 1985 Mar 10;260(5):3079–3083. [PubMed] [Google Scholar]
  27. Paralkar V. M., Vukicevic S., Reddi A. H. Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol. 1991 Feb;143(2):303–308. doi: 10.1016/0012-1606(91)90081-d. [DOI] [PubMed] [Google Scholar]
  28. Pavloff N., Staskus P. W., Kishnani N. S., Hawkes S. P. A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. J Biol Chem. 1992 Aug 25;267(24):17321–17326. [PubMed] [Google Scholar]
  29. Professor G. Ya. Bei-Bienko. Nature. 1972 Mar 31;236(5344):247–248. doi: 10.1038/236247c0. [DOI] [PubMed] [Google Scholar]
  30. Sas D. F., McCarthy J. B., Furcht L. T. Clearing and release of basement membrane proteins from substrates by metastatic tumor cell variants. Cancer Res. 1986 Jun;46(6):3082–3089. [PubMed] [Google Scholar]
  31. Shields R., Pollock K. The adhesion of BHK and PyBHK cells to the substratum. Cell. 1974 Sep;3(1):31–38. doi: 10.1016/0092-8674(74)90034-8. [DOI] [PubMed] [Google Scholar]
  32. Smith J. C., Singh J. P., Lillquist J. S., Goon D. S., Stiles C. D. Growth factors adherent to cell substrate are mitogenically active in situ. Nature. 1982 Mar 11;296(5853):154–156. doi: 10.1038/296154a0. [DOI] [PubMed] [Google Scholar]
  33. Staskus P. W., Masiarz F. R., Pallanck L. J., Hawkes S. P. The 21-kDa protein is a transformation-sensitive metalloproteinase inhibitor of chicken fibroblasts. J Biol Chem. 1991 Jan 5;266(1):449–454. [PubMed] [Google Scholar]
  34. Stetler-Stevenson W. G., Bersch N., Golde D. W. Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett. 1992 Jan 20;296(2):231–234. doi: 10.1016/0014-5793(92)80386-u. [DOI] [PubMed] [Google Scholar]
  35. Stetler-Stevenson W. G., Brown P. D., Onisto M., Levy A. T., Liotta L. A. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem. 1990 Aug 15;265(23):13933–13938. [PubMed] [Google Scholar]
  36. Sullivan L. M., Quigley J. P. An anticatalytic monoclonal antibody to avian plasminogen activator: its effect on behavior of RSV-transformed chick fibroblasts. Cell. 1986 Jun 20;45(6):905–915. doi: 10.1016/0092-8674(86)90565-9. [DOI] [PubMed] [Google Scholar]
  37. Testa J. E., Quigley J. P. Reversal of misfortune: TIMP-2 inhibits tumor cell invasion. J Natl Cancer Inst. 1991 Jun 5;83(11):740–742. doi: 10.1093/jnci/83.11.740. [DOI] [PubMed] [Google Scholar]
  38. Welgus H. G., Stricklin G. P., Eisen A. Z., Bauer E. A., Cooney R. V., Jeffrey J. J. A specific inhibitor of vertebrate collagenase produced by human skin fibroblasts. J Biol Chem. 1979 Mar 25;254(6):1938–1943. [PubMed] [Google Scholar]
  39. Welgus H. G., Stricklin G. P. Human skin fibroblast collagenase inhibitor. Comparative studies in human connective tissues, serum, and amniotic fluid. J Biol Chem. 1983 Oct 25;258(20):12259–12264. [PubMed] [Google Scholar]
  40. Westbrook C. A., Gasson J. C., Gerber S. E., Selsted M. E., Golde D. W. Purification and characterization of human T-lymphocyte-derived erythroid-potentiating activity. J Biol Chem. 1984 Aug 25;259(16):9992–9996. [PubMed] [Google Scholar]
  41. Yee C., Shiu R. P. Degradation of endothelial basement membrane by human breast cancer cell lines. Cancer Res. 1986 Apr;46(4 Pt 1):1835–1839. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES