Abstract
Measurements of pulsatile ocular blood flow (POBF) have been recorded in a group of healthy, ocular normotensive volunteers and ocular hypertensive patients recruited from outpatients. Use of a pneumotonometric probe linked to a Langham ocular blood flow system enabled readings of intraocular pressure and its variation with heart rate (ocular pulse) to be taken in erect and supine positions. Pulsatile ocular blood flow was calculated from these values by means of the pressure-volume relationship previously described for living human eyes. Assumption of the supine posture was accompanied by a significant rise in intraocular pressure; in normal eyes (mean, with SEM) (3.1 (0.4) mmHg, p less than 0.0001) and to a greater extent in ocular hypertensive eyes (4.7 (0.6) mmHg, p less than 0.0001). The POBF did not differ significantly between normotensive and ocular hypertensive groups in either the erect or supine postures. In both groups, however, assumption of the supine posture was accompanied by a significant fall in POBF (normals: -121 (21) microliters/min, p less than 0.0001; ocular hypertensives: -75 (16) microliters/min, p less than 0.0002). These reductions in POBF represent decrements of 27.5 (3.0)% and 17.1 (3.8)% respectively. Pulsatile ocular blood flow is reduced in the supine posture, and this may result in tissue hypoxia in subjects at risk of developing glaucoma. A companion paper describes the measurement of POBF in a group of patients with chronic open angle glaucoma treated with topical timolol 0.25%.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm A., Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res. 1973 Jan 1;15(1):15–29. doi: 10.1016/0014-4835(73)90185-1. [DOI] [PubMed] [Google Scholar]
- Alm A., Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand. 1972 Mar;84(3):306–319. doi: 10.1111/j.1748-1716.1972.tb05182.x. [DOI] [PubMed] [Google Scholar]
- Anderson D. R., Grant W. M. The influence of position on intraocular pressure. Invest Ophthalmol. 1973 Mar;12(3):204–212. [PubMed] [Google Scholar]
- Bulpitt C. J., Dollery C. T. Estimation of retinal blood flow by measurement of the mean circulation time. Cardiovasc Res. 1971 Jul;5(3):406–412. doi: 10.1093/cvr/5.3.406. [DOI] [PubMed] [Google Scholar]
- Canning C. R., Restori M. Doppler ultrasound studies of the ophthalmic artery. Eye (Lond) 1988;2(Pt 1):92–95. doi: 10.1038/eye.1988.19. [DOI] [PubMed] [Google Scholar]
- Eisenlohr J. E., Langham M. E., Maumenee A. E. MANOMETRIC STUDIES OF THE PRESSURE-VOLUME RELATIONSHIP IN LIVING AND ENUCLEATED EYES OF INDIVIDUAL HUMAN SUBJECTS. Br J Ophthalmol. 1962 Sep;46(9):536–548. doi: 10.1136/bjo.46.9.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flower R. W., Klein G. J. Pulsatile flow in the choroidal circulation: a preliminary investigation. Eye (Lond) 1990;4(Pt 2):310–318. doi: 10.1038/eye.1990.42. [DOI] [PubMed] [Google Scholar]
- Friedman E., Ivry M., Ebert E., Glynn R., Gragoudas E., Seddon J. Increased scleral rigidity and age-related macular degeneration. Ophthalmology. 1989 Jan;96(1):104–108. doi: 10.1016/s0161-6420(89)32936-8. [DOI] [PubMed] [Google Scholar]
- Hague S., Hill D. W. Postural changes in perfusion pressure and retinal arteriolar calibre. Br J Ophthalmol. 1988 Apr;72(4):253–257. doi: 10.1136/bjo.72.4.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill D. W., Pike E. R., Gardner K. Laser doppler velocimetry of the retinal blood flow. Trans Ophthalmol Soc U K. 1981;101(1):152–155. [PubMed] [Google Scholar]
- LANGHAM M. E., EISENLOHR J. E. A manometric study of the rate of fall of the intraocular pressure in the living and dead eyes of human subjects. Invest Ophthalmol. 1963 Feb;2:72–82. [PubMed] [Google Scholar]
- Langham M. E., Farrell R. A., O'Brien V., Silver D. M., Schilder P. Blood flow in the human eye. Acta Ophthalmol Suppl. 1989;191:9–13. doi: 10.1111/j.1755-3768.1989.tb07080.x. [DOI] [PubMed] [Google Scholar]
- Langham M. E., To'Mey K. F. A clinical procedure for the measurements of the ocular pulse-pressure relationship and the ophthalmic arterial pressure. Exp Eye Res. 1978 Jul;27(1):17–25. doi: 10.1016/0014-4835(78)90049-0. [DOI] [PubMed] [Google Scholar]
- Langham M. E. Vascular pathophysiology of the ocular postural response. A pneumatonometric study. Trans Ophthalmol Soc U K. 1975 Jul;95(2):281–287. [PubMed] [Google Scholar]
- Leonard T. J., Kerr Muir M. G., Kirkby G. R., Hitchings R. A. Ocular hypertension and posture. Br J Ophthalmol. 1983 Jun;67(6):362–366. doi: 10.1136/bjo.67.6.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagasubramanian S., Perkins E. S., Gloster J. Combined reflectometric and photographic study of the retinal and choroidal circulation at raised intraocular pressure. Preliminary report. Trans Ophthalmol Soc U K. 1977 Apr;97(1):177–184. [PubMed] [Google Scholar]
- Perkins E. S. The ocular pulse and intraocular pressure as a screening test for carotid artery stenosis. Br J Ophthalmol. 1985 Sep;69(9):676–680. doi: 10.1136/bjo.69.9.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins E. S. The ocular pulse. Curr Eye Res. 1981;1(1):19–23. doi: 10.3109/02713688109019968. [DOI] [PubMed] [Google Scholar]
- Quigley H. A., Langham M. E. Comparative intraocular pressure measurements with the pneumatonograph and Goldmann tonometer. Am J Ophthalmol. 1975 Aug;80(2):266–273. doi: 10.1016/0002-9394(75)90144-0. [DOI] [PubMed] [Google Scholar]
- Richard G. W. Differentiation of retinal circulation times by videoangiography. Ophthalmologica. 1985;191(3):161–163. doi: 10.1159/000309580. [DOI] [PubMed] [Google Scholar]
- Riva C. E., Grunwald J. E., Sinclair S. H. Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci. 1982 Feb;22(2):241–248. [PubMed] [Google Scholar]
- Riva C. E., Grunwald J. E., Sinclair S. H., Petrig B. L. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci. 1985 Aug;26(8):1124–1132. [PubMed] [Google Scholar]
- Roy M. S., Harrison K. S., Harvey E., Mitchell T. Ocular blood flow in dogs using radiolabelled microspheres. Int J Rad Appl Instrum B. 1989;16(1):81–84. doi: 10.1016/0883-2897(89)90217-1. [DOI] [PubMed] [Google Scholar]
- Schulzer M., Drance S. M. Intraocular pressure, systemic blood pressure, and age: a correlational study. Br J Ophthalmol. 1987 Apr;71(4):245–249. doi: 10.1136/bjo.71.4.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver D. M., Farrell R. A., Langham M. E., O'Brien V., Schilder P. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol Suppl. 1989;191:25–29. doi: 10.1111/j.1755-3768.1989.tb07083.x. [DOI] [PubMed] [Google Scholar]
- Sossi N., Anderson D. R. Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol. 1983 Jan;101(1):98–101. doi: 10.1001/archopht.1983.01040010100018. [DOI] [PubMed] [Google Scholar]
- Sperber G. O., Bill A. Blood flow and glucose consumption in the optic nerve, retina and brain: effects of high intraocular pressure. Exp Eye Res. 1985 Nov;41(5):639–653. doi: 10.1016/0014-4835(85)90036-3. [DOI] [PubMed] [Google Scholar]
- Tsukahara S., Sasaki T. Postural change of IOP in normal persons and in patients with primary wide open-angle glaucoma and low-tension glaucoma. Br J Ophthalmol. 1984 Jun;68(6):389–392. doi: 10.1136/bjo.68.6.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
