Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1992 May;76(5):264–267. doi: 10.1136/bjo.76.5.264

The dark perimetric stimulus.

E Mutlukan 1, B E Damato 1
PMCID: PMC504252  PMID: 1390506

Abstract

We determined the disappearance eccentricities of dark and bright stimuli of equal size in the inferonasal central visual field using the oculokinetic perimetry technique at different levels of surrounding illumination. The results suggest that a dark stimulus on a bright background has a smaller 'isoptre' than an equally bright stimulus on a dark background, and that variation of ambient illumination and consequent alteration of background luminance have less effect on the visibility of a dark stimulus than a bright one.

Full text

PDF
264

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowen R. W., Pokorny J., Smith V. C. Sawtooth contrast sensitivity: decrements have the edge. Vision Res. 1989;29(11):1501–1509. doi: 10.1016/0042-6989(89)90134-x. [DOI] [PubMed] [Google Scholar]
  2. Damato B. E. Oculokinetic perimetry: a simple visual field test for use in the community. Br J Ophthalmol. 1985 Dec;69(12):927–931. doi: 10.1136/bjo.69.12.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Monasterio F. M., Gouras P. Functional properties of ganglion cells of the rhesus monkey retina. J Physiol. 1975 Sep;251(1):167–195. doi: 10.1113/jphysiol.1975.sp011086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Derrington A. M., Lennie P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol. 1984 Dec;357:219–240. doi: 10.1113/jphysiol.1984.sp015498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Falcão-Reis F., O'Donoghue E., Buceti R., Hitchings R. A., Arden G. B. Peripheral contrast sensitivity in glaucoma and ocular hypertension. Br J Ophthalmol. 1990 Dec;74(12):712–716. doi: 10.1136/bjo.74.12.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gouras P., Zrenner E. Color coding in primate retina. Vision Res. 1981;21(11):1591–1598. doi: 10.1016/0042-6989(81)90039-0. [DOI] [PubMed] [Google Scholar]
  7. Kageyama G. H., Wong-Riley M. T. The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and ON/OFF-center visual channels. J Neurosci. 1984 Oct;4(10):2445–2459. doi: 10.1523/JNEUROSCI.04-10-02445.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Liu S., Wong-Riley M. Quantitative light- and electron-microscopic analysis of cytochrome-oxidase distribution in neurons of the lateral geniculate nucleus of the adult monkey. Vis Neurosci. 1990 Mar;4(3):269–287. doi: 10.1017/s0952523800003400. [DOI] [PubMed] [Google Scholar]
  9. Nelson R., Famiglietti E. V., Jr, Kolb H. Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J Neurophysiol. 1978 Mar;41(2):472–483. doi: 10.1152/jn.1978.41.2.472. [DOI] [PubMed] [Google Scholar]
  10. Peichl L., Wässle H. Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina. Proc R Soc Lond B Biol Sci. 1981 May 22;212(1187):139–153. doi: 10.1098/rspb.1981.0030. [DOI] [PubMed] [Google Scholar]
  11. Perry V. H., Cowey A. The morphological correlates of X- and Y-like retinal ganglion cells in the retina of monkeys. Exp Brain Res. 1981;43(2):226–228. doi: 10.1007/BF00237768. [DOI] [PubMed] [Google Scholar]
  12. Perry V. H., Silveira L. C. Functional lamination in the ganglion cell layer of the macaque's retina. Neuroscience. 1988 Apr;25(1):217–223. doi: 10.1016/0306-4522(88)90020-6. [DOI] [PubMed] [Google Scholar]
  13. Quigley H. A., Dunkelberger G. R., Green W. R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989 May 15;107(5):453–464. doi: 10.1016/0002-9394(89)90488-1. [DOI] [PubMed] [Google Scholar]
  14. Saito T. Physiological and morphological differences between On- and Off-center bipolar cells in the vertebrate retina. Vision Res. 1987;27(2):135–142. doi: 10.1016/0042-6989(87)90176-3. [DOI] [PubMed] [Google Scholar]
  15. Schiller P. H., Sandell J. H., Maunsell J. H. Functions of the ON and OFF channels of the visual system. 1986 Aug 28-Sep 3Nature. 322(6082):824–825. doi: 10.1038/322824a0. [DOI] [PubMed] [Google Scholar]
  16. White T. W., Irvin G. E., Williams M. C. Asymmetry in the brightness and darkness Broca-Sulzer effects. Vision Res. 1980;20(8):723–726. doi: 10.1016/0042-6989(80)90098-x. [DOI] [PubMed] [Google Scholar]
  17. Wässle H., Peichl L., Boycott B. B. A spatial analysis of on- and off-ganglion cells in the cat retina. Vision Res. 1983;23(10):1151–1160. doi: 10.1016/0042-6989(83)90029-9. [DOI] [PubMed] [Google Scholar]
  18. Zemon V., Gordon J., Welch J. Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci. 1988;1(1):145–150. doi: 10.1017/s0952523800001085. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES