Abstract
This report describes the properties of two mammalian cytochromes P450 that have been expressed at high levels in Escherichia coli as enzymatically active fusion proteins containing the flavoprotein domain of rat NADPH-cytochrome P450 reductase (EC 1.6.2.4). Fusion proteins were prepared by engineering the cDNAs for the steroid-metabolizing bovine adrenal P450 17A with the cDNA for rat liver NADPH-P450 reductase with the introduction of a Ser-Thr linker to give a protein we have named rF450[mBov17A/mRatOR]L1. Similarly, the cDNA for the omega-hydroxylase of rat liver (P450 4A1) was linked with the cDNA for rat liver NADPH-P450 reductase to give rF450[mRat4A1/mRatOR]L1. A procedure involving disruption of transformed E. coli by sonication, isolation of membranes by differential centrifugation, solubilization with detergent, and affinity chromatography provided significant amounts of purified fusion proteins of approximately 118 kDa. The purified fusion proteins had turnover numbers for the metabolism of steroids (rF450[mBov17A/mRatOR]L1) or fatty acids (rF450[mRat4A1/mRatOR]L1) ranging from 10/min to 30/min in the absence of added phospholipid. Addition of purified rat liver cytochrome b5 stimulated the 17,20-lyase reaction for the conversion of 17-hydroxypregnenolone to dehydroepiandrosterone, and addition of purified rat NADPH-cytochrome P450 reductase enhanced the formation of omega--1 metabolites from lauric and arachidonic acids. NADPH oxidation was tightly coupled to substrate hydroxylation with the purified fusion proteins.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes H. J., Arlotto M. P., Waterman M. R. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5597–5601. doi: 10.1073/pnas.88.13.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boddupalli S. S., Estabrook R. W., Peterson J. A. Fatty acid monooxygenation by cytochrome P-450BM-3. J Biol Chem. 1990 Mar 15;265(8):4233–4239. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Clark B. J., Waterman M. R. Heterologous expression of mammalian P450 in COS cells. Methods Enzymol. 1991;206:100–108. doi: 10.1016/0076-6879(91)06081-d. [DOI] [PubMed] [Google Scholar]
- Earnshaw D., Dale J. W., Goldfarb P. S., Gibson G. G. Differential splicing in the 3' non-coding region of rat cytochrome P-452 (P450 IVA1) mRNA. FEBS Lett. 1988 Aug 29;236(2):357–361. doi: 10.1016/0014-5793(88)80055-3. [DOI] [PubMed] [Google Scholar]
- Estabrook R. W., Mason J. I., Martin-Wixtrom C., Zuber M., Waterman M. R. Some enzymatic vagaries of a bovine adrenal microsomal cytochrome P-450 introduced and expressed in transformed monkey kidney cells. Prog Clin Biol Res. 1988;274:525–540. [PubMed] [Google Scholar]
- Faeder E. J., Siegel L. M. A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem. 1973 May;53(1):332–336. doi: 10.1016/0003-2697(73)90442-9. [DOI] [PubMed] [Google Scholar]
- Fisher C. W., Caudle D. L., Martin-Wixtrom C., Quattrochi L. C., Tukey R. H., Waterman M. R., Estabrook R. W. High-level expression of functional human cytochrome P450 1A2 in Escherichia coli. FASEB J. 1992 Jan 6;6(2):759–764. doi: 10.1096/fasebj.6.2.1537466. [DOI] [PubMed] [Google Scholar]
- Kusunose E., Ogita K., Ichihara K., Kusunose M. Effect of cytochrome b5 on fatty acid omega- and (omega-1)-hydroxylation catalyzed by partially purified cytochrome P-450 from rabbit kidney cortex microsomes. J Biochem. 1981 Oct;90(4):1069–1076. doi: 10.1093/oxfordjournals.jbchem.a133558. [DOI] [PubMed] [Google Scholar]
- Lindberg R. L., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature. 1989 Jun 22;339(6226):632–634. doi: 10.1038/339632a0. [DOI] [PubMed] [Google Scholar]
- Lu A. Y., Coon M. J. Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem. 1968 Mar 25;243(6):1331–1332. [PubMed] [Google Scholar]
- Mason J. I., Carr B. R., Murry B. A. Imidazole antimycotics: selective inhibitors of steroid aromatization and progesterone hydroxylation. Steroids. 1987 Jul-Sep;50(1-3):179–189. doi: 10.1016/0039-128x(83)90070-3. [DOI] [PubMed] [Google Scholar]
- Miura Y., Fulco A. J. (Omega -2) hydroxylation of fatty acids by a soluble system from bacillus megaterium. J Biol Chem. 1974 Mar 25;249(6):1880–1888. [PubMed] [Google Scholar]
- Murakami H., Yabusaki Y., Sakaki T., Shibata M., Ohkawa H. A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA. 1987 Jun;6(3):189–197. doi: 10.1089/dna.1987.6.189. [DOI] [PubMed] [Google Scholar]
- Nakajin S., Shively J. E., Yuan P. M., Hall P. F. Microsomal cytochrome P-450 from neonatal pig testis: two enzymatic activities (17 alpha-hydroxylase and c17,20-lyase) associated with one protein. Biochemistry. 1981 Jul 7;20(14):4037–4042. doi: 10.1021/bi00517a014. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Strobel H. W. Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry. 1989 Jan 24;28(2):656–660. doi: 10.1021/bi00428a036. [DOI] [PubMed] [Google Scholar]
- Okita R. T., Parkhill L. K., Yasukochi Y., Masters B. S., Theoharides A. D., Kupfer D. The omega- and (omega-1)-hydroxylase activities of prostaglandins A1 and E1 and lauric acid by pig kidney microsomes and a purified kidney cytochrome P-450. J Biol Chem. 1981 Jun 25;256(12):5961–5964. [PubMed] [Google Scholar]
- Peterson J. A., Boddupalli S. S. P450BM-3: reduction by NADPH and sodium dithionite. Arch Biochem Biophys. 1992 May 1;294(2):654–661. doi: 10.1016/0003-9861(92)90738-i. [DOI] [PubMed] [Google Scholar]
- Sakaki T., Shibata M., Yabusaki Y., Murakami H., Ohkawa H. Expression of bovine cytochrome P450c17 cDNA in Saccharomyces cerevisiae. DNA. 1989 Jul-Aug;8(6):409–418. doi: 10.1089/dna.1.1989.8.409. [DOI] [PubMed] [Google Scholar]
- Shen A. L., Porter T. D., Wilson T. E., Kasper C. B. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. J Biol Chem. 1989 May 5;264(13):7584–7589. [PubMed] [Google Scholar]
- Theoharides A. D., Kupfer D. Evidence for different hepatic microsomal monooxygenases catalyzing omega- and (omega-1)-hydroxylations of prostaglandins E1 and E2. Effects of inducers of monooxygenase on the kinetic constants of prostaglandin hydroxylation. J Biol Chem. 1981 Mar 10;256(5):2168–2175. [PubMed] [Google Scholar]
- Yasukochi Y., Okita R. T., Masters B. S. Comparison of the properties of detergent-solubilized NADPH-cytochrome P-450 reductases from pig liver and kidney. Immunochemical, kinetic, and reconstitutive properties. Arch Biochem Biophys. 1980 Jul;202(2):491–498. doi: 10.1016/0003-9861(80)90454-3. [DOI] [PubMed] [Google Scholar]