Abstract
Parapapillary chorioretinal atrophy is a morphological feature of glaucomatous optic nerve damage since it occurs more often and is larger in glaucomatous eyes than in normal eyes. This study was undertaken to find the histological correlation. Optic disc photographs and histological sections through the optic disc of 21 human eyes enucleated because of malignant uveal melanoma were morphometrically evaluated. Seventeen eyes had normal intraocular pressure and four eyes showed elevated intraocular pressure and glaucomatous optic disc cupping. Ophthalmoscopically, the parapillary chorioretinal atrophy was divided into zone 'alpha', located peripherally and characterised by irregular hypopigmentation and hyperpigmentation, and zone 'beta' located close to the optic disc border and showing visible sclera and visible large choroidal vessels. Histologically, zones 'A' and 'B' were differentiated. Zone 'A' peripheral to zone 'B' showed irregularities in the retinal pigment epithelium. It consisted of an unequal distribution of melanin granules and partial atrophy of cells. In zone 'B' adjacent to the optic disc, Bruch's membrane was bared of retinal pigment epithelium cells and the photoreceptors were markedly reduced in density or were completely missing. In a direct clinical histological comparison, zone 'A' correlated significantly with zone 'alpha' (r = 0.66; p < 0.01), and zone 'B' correlated with zone 'beta' (r = 0.99; p < 0.0001). Zone 'A', 'B', 'alpha' and 'beta' were larger in the four glaucomatous eyes than in the normal ones. The findings indicate that zone 'beta' represents histologically a complete loss of retinal pigment epithelium cells and an incomplete loss of adjacent photoreceptors. Zone 'alpha' may be the histological correlate of irregularities in the retinal pigment epithelium.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm A., Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res. 1973 Jan 1;15(1):15–29. doi: 10.1016/0014-4835(73)90185-1. [DOI] [PubMed] [Google Scholar]
- Alm A., Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand. 1972 Mar;84(3):306–319. doi: 10.1111/j.1748-1716.1972.tb05182.x. [DOI] [PubMed] [Google Scholar]
- Buus D. R., Anderson D. R. Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension. Ophthalmology. 1989 Jan;96(1):16–19. doi: 10.1016/s0161-6420(89)32930-7. [DOI] [PubMed] [Google Scholar]
- Caprioli J., Spaeth G. L. Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol. 1985 Aug;103(8):1145–1149. doi: 10.1001/archopht.1985.01050080057020. [DOI] [PubMed] [Google Scholar]
- Fantes F. E., Anderson D. R. Clinical histologic correlation of human peripapillary anatomy. Ophthalmology. 1989 Jan;96(1):20–25. doi: 10.1016/s0161-6420(89)32929-0. [DOI] [PubMed] [Google Scholar]
- Hayreh S. S. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969 Nov;53(11):721–748. doi: 10.1136/bjo.53.11.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayreh S. S. Optic disc changes in glaucoma. Br J Ophthalmol. 1972 Mar;56(3):175–185. doi: 10.1136/bjo.56.3.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonas J. B., Fernández M. C., Naumann G. O. Glaucomatous parapapillary atrophy. Occurrence and correlations. Arch Ophthalmol. 1992 Feb;110(2):214–222. doi: 10.1001/archopht.1992.01080140070030. [DOI] [PubMed] [Google Scholar]
- Jonas J. B., Gusek G. C., Fernández M. C. Correlation of the blind spot size to the area of the optic disk and parapapillary atrophy. Am J Ophthalmol. 1991 May 15;111(5):559–565. doi: 10.1016/s0002-9394(14)73698-0. [DOI] [PubMed] [Google Scholar]
- Jonas J. B., Königsreuther K. A., Naumann G. O. Optic disc histomorphometry in normal eyes and eyes with secondary angle-closure glaucoma. II. Parapapillary region. Graefes Arch Clin Exp Ophthalmol. 1992;230(2):134–139. doi: 10.1007/BF00164651. [DOI] [PubMed] [Google Scholar]
- Jonas J. B., Naumann G. O. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci. 1989 May;30(5):919–926. [PubMed] [Google Scholar]
- Jonas J. B., Nguyen N. X., Naumann G. O. Die retinale Nervenfaserschicht in Normal- und Glaukomaugen. II. Korrelationen. Klin Monbl Augenheilkd. 1989 Nov;195(5):308–314. doi: 10.1055/s-2008-1050044. [DOI] [PubMed] [Google Scholar]
- Jonas J. B., Nguyen X. N., Gusek G. C., Naumann G. O. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989 May;30(5):908–918. [PubMed] [Google Scholar]
- Kasner O., Feuer W. J., Anderson D. R. Possibly reduced prevalence of peripapillary crescents in ocular hypertension. Can J Ophthalmol. 1989 Aug;24(5):211–215. [PubMed] [Google Scholar]
- Littmann H. Zur Bestimmung der wahren Grösse eines Objektes auf dem Hintergrund des lebenden Auges. Klin Monbl Augenheilkd. 1982 Apr;180(4):286–289. doi: 10.1055/s-2008-1055068. [DOI] [PubMed] [Google Scholar]
- Nevarez J., Rockwood E. J., Anderson D. R. The configuration of peripapillary tissue in unilateral glaucoma. Arch Ophthalmol. 1988 Jul;106(7):901–903. doi: 10.1001/archopht.1988.01060140047021. [DOI] [PubMed] [Google Scholar]
- Panda S., Jonas J. B. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 1992 Jul;33(8):2532–2536. [PubMed] [Google Scholar]
- Primrose J. Early signs of the glaucomatous disc. Br J Ophthalmol. 1971 Dec;55(12):820–825. doi: 10.1136/bjo.55.12.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Primrose J. Peripapillary changes in glaucoma. Am J Ophthalmol. 1977 Jun;83(6):930–931. doi: 10.1016/0002-9394(77)90932-1. [DOI] [PubMed] [Google Scholar]
- Raitta C., Sarmela T. Fluorescein angiography of the optic disc and the peripapillary area in chronic glaucoma. Acta Ophthalmol (Copenh) 1970;48(2):303–308. doi: 10.1111/j.1755-3768.1970.tb08199.x. [DOI] [PubMed] [Google Scholar]
- Rockwood E. J., Anderson D. R. Acquired peripapillary changes and progression in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1988;226(6):510–515. doi: 10.1007/BF02169197. [DOI] [PubMed] [Google Scholar]
- Ueno M., Naumann G. O. Uveal damage in secondary glaucoma. A morphometric study. Graefes Arch Clin Exp Ophthalmol. 1989;227(4):380–383. doi: 10.1007/BF02169417. [DOI] [PubMed] [Google Scholar]
- Wilensky J. T., Kolker A. E. Peripapillary changes in glaucoma. Am J Ophthalmol. 1976 Mar;81(3):341–345. doi: 10.1016/0002-9394(76)90251-8. [DOI] [PubMed] [Google Scholar]


