Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1994 May;78(5):370–376. doi: 10.1136/bjo.78.5.370

Expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on proliferating vascular endothelial cells in diabetic epiretinal membranes.

S Tang 1, K C Le-Ruppert 1, V P Gabel 1
PMCID: PMC504790  PMID: 7517695

Abstract

The present study demonstrated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), the proliferating status of the neovascular endothelial cells, and the activation of vascular endothelial cells bearing the two cell adhesion molecules in diabetic epiretinal membranes by using double immunofluorescence and APAAP techniques. The results showed that ICAM-1 was detected in 36 out of 40 (90%) proliferative diabetic retinopathy epiretinal membranes, VCAM-1 was found in 32 out of 40 cases (80%); in 21 out of 26 (81%) vascularised membranes the endothelial cells of the new vessels in the membranes were still in a proliferative stage (positive for proliferating endothelial cell marker EN 7/44) and, further, in 20 out of 26 cases (77%) ICAM-1 was detected on the proliferating endothelial cells and VCAM-1 was found in 21 cases (81%). The expression of cell adhesion molecules, especially ICAM-1 and VCAM-1 in diabetic epiretinal membranes suggests that cell to cell interactions may play a significant role in the development of PDR membranes. In particular, the expression of ICAM-1 and VCAM-1 on proliferating endothelial cells indicates the activation of these cells, which is the first critical step for lymphocyte/endothelial cell interactions and the initiation of immune responses. The significance of proliferating status of the neovascularisation in the membranes may be related to the clinical course and prognosis of the disease.

Full text

PDF
370

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann D. M., Hogg N., Trowsdale J., Wilkinson D. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature. 1989 Apr 6;338(6215):512–514. doi: 10.1038/338512a0. [DOI] [PubMed] [Google Scholar]
  2. Boyd A. W., Wawryk S. O., Burns G. F., Fecondo J. V. Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proc Natl Acad Sci U S A. 1988 May;85(9):3095–3099. doi: 10.1073/pnas.85.9.3095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlos T. M., Schwartz B. R., Kovach N. L., Yee E., Rosa M., Osborn L., Chi-Rosso G., Newman B., Lobb R., Rosso M. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood. 1990 Sep 1;76(5):965–970. [PubMed] [Google Scholar]
  4. Clarkson J. G., Green W. R., Massof D. A histopathologic review of 168 cases of preretinal membrane. Am J Ophthalmol. 1977 Jul;84(1):1–17. [PubMed] [Google Scholar]
  5. Dougherty G. J., Murdoch S., Hogg N. The function of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response. Eur J Immunol. 1988 Jan;18(1):35–39. doi: 10.1002/eji.1830180107. [DOI] [PubMed] [Google Scholar]
  6. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 Jul 1;137(1):245–254. [PubMed] [Google Scholar]
  7. Dustin M. L., Springer T. A. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol. 1988 Jul;107(1):321–331. doi: 10.1083/jcb.107.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elner S. G., Elner V. M., Pavilack M. A., Todd R. F., 3rd, Mayo-Bond L., Franklin W. A., Strieter R. M., Kunkel S. L., Huber A. R. Modulation and function of intercellular adhesion molecule-1 (CD54) on human retinal pigment epithelial cells. Lab Invest. 1992 Feb;66(2):200–211. [PubMed] [Google Scholar]
  9. Faull R. J., Russ G. R. Tubular expression of intercellular adhesion molecule-1 during renal allograft rejection. Transplantation. 1989 Aug;48(2):226–230. doi: 10.1097/00007890-198908000-00009. [DOI] [PubMed] [Google Scholar]
  10. Gallatin W. M., Weissman I. L., Butcher E. C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983 Jul 7;304(5921):30–34. doi: 10.1038/304030a0. [DOI] [PubMed] [Google Scholar]
  11. Graber N., Gopal T. V., Wilson D., Beall L. D., Polte T., Newman W. T cells bind to cytokine-activated endothelial cells via a novel, inducible sialoglycoprotein and endothelial leukocyte adhesion molecule-1. J Immunol. 1990 Aug 1;145(3):819–830. [PubMed] [Google Scholar]
  12. Hagemeier H. H., Vollmer E., Goerdt S., Schulze-Osthoff K., Sorg C. A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. Int J Cancer. 1986 Oct 15;38(4):481–488. doi: 10.1002/ijc.2910380405. [DOI] [PubMed] [Google Scholar]
  13. Hamilton C. W., Chandler D., Klintworth G. K., Machemer R. A transmission and scanning electron microscopic study of surgically excised preretinal membrane proliferations in diabetes mellitus. Am J Ophthalmol. 1982 Oct;94(4):473–488. doi: 10.1016/0002-9394(82)90241-0. [DOI] [PubMed] [Google Scholar]
  14. Heidenkummer H. P., Kampik A. Intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1) expression in human epiretinal membranes. Graefes Arch Clin Exp Ophthalmol. 1992;230(5):483–487. doi: 10.1007/BF00175938. [DOI] [PubMed] [Google Scholar]
  15. Heidenkummer H. P., Kampik A. Vergleichende immunhistochemische Untersuchungen epiretinaler Membranen bei proliferativen vitreoretinalen Erkrankungen. Fortschr Ophthalmol. 1991;88(3):219–224. [PubMed] [Google Scholar]
  16. Hui Y. N., Goodnight R., Zhang X. J., Sorgente N., Ryan S. J. Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol. 1988 Sep;106(9):1280–1285. doi: 10.1001/archopht.1988.01060140440049. [DOI] [PubMed] [Google Scholar]
  17. Jerdan J. A., Michels R. G., Glaser B. M. Diabetic preretinal membranes. An immunohistochemical study. Arch Ophthalmol. 1986 Feb;104(2):286–290. doi: 10.1001/archopht.1986.01050140144038. [DOI] [PubMed] [Google Scholar]
  18. Joos K. M., Sandra A. Microarterial synthetic graft repair: interstitial cellular components. Microsurgery. 1990;11(4):268–277. doi: 10.1002/micr.1920110404. [DOI] [PubMed] [Google Scholar]
  19. Kampik A., Kenyon K. R., Michels R. G., Green W. R., de la Cruz Z. C. Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol. 1981 Aug;99(8):1445–1454. doi: 10.1001/archopht.1981.03930020319025. [DOI] [PubMed] [Google Scholar]
  20. Konter U., Kellner I., Klein E., Kaufmann R., Mielke V., Sterry W. Adhesion molecule mapping in normal human skin. Arch Dermatol Res. 1989;281(7):454–462. doi: 10.1007/BF00510080. [DOI] [PubMed] [Google Scholar]
  21. Liversidge J., Sewell H. F., Forrester J. V. Interactions between lymphocytes and cells of the blood-retina barrier: mechanisms of T lymphocyte adhesion to human retinal capillary endothelial cells and retinal pigment epithelial cells in vitro. Immunology. 1990 Nov;71(3):390–396. [PMC free article] [PubMed] [Google Scholar]
  22. Melato M., Antonutto G., Manconi R., Ponte E. Ocular deposits of immunoglobulin in diabetic retinopathy. Can J Ophthalmol. 1982 Feb;17(1):45–46. [PubMed] [Google Scholar]
  23. Osborn L., Hession C., Tizard R., Vassallo C., Luhowskyj S., Chi-Rosso G., Lobb R. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989 Dec 22;59(6):1203–1211. doi: 10.1016/0092-8674(89)90775-7. [DOI] [PubMed] [Google Scholar]
  24. Rothlein R., Dustin M. L., Marlin S. D., Springer T. A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol. 1986 Aug 15;137(4):1270–1274. [PubMed] [Google Scholar]
  25. Scheiffarth O. F., Kampik A., Günther H., von der Mark K. Proteins of the extracellular matrix in vitreoretinal membranes. Graefes Arch Clin Exp Ophthalmol. 1988;226(4):357–361. doi: 10.1007/BF02172967. [DOI] [PubMed] [Google Scholar]
  26. Schultz G. S., Grant M. B. Neovascular growth factors. Eye (Lond) 1991;5(Pt 2):170–180. doi: 10.1038/eye.1991.31. [DOI] [PubMed] [Google Scholar]
  27. Seron D., Cameron J. S., Haskard D. O. Expression of VCAM-1 in the normal and diseased kidney. Nephrol Dial Transplant. 1991;6(12):917–922. doi: 10.1093/ndt/6.12.917. [DOI] [PubMed] [Google Scholar]
  28. Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
  29. Simmons D., Makgoba M. W., Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature. 1988 Feb 18;331(6157):624–627. doi: 10.1038/331624a0. [DOI] [PubMed] [Google Scholar]
  30. Sivalingam A., Kenney J., Brown G. C., Benson W. E., Donoso L. Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1990 Jun;108(6):869–872. doi: 10.1001/archopht.1990.01070080113046. [DOI] [PubMed] [Google Scholar]
  31. Stolpen A. H., Guinan E. C., Fiers W., Pober J. S. Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol. 1986 Apr;123(1):16–24. [PMC free article] [PubMed] [Google Scholar]
  32. Tang S. B., Scheiffarth O. F. [An immunohistochemical study of vitreal and epiretinal membranes in human eyes]. Zhonghua Yan Ke Za Zhi. 1990 Sep;26(5):282–285. [PubMed] [Google Scholar]
  33. Tang S., Scheiffarth O. F., Thurau S. R., Wildner G. Cells of the immune system and their cytokines in epiretinal membranes and in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmic Res. 1993;25(3):177–185. doi: 10.1159/000267287. [DOI] [PubMed] [Google Scholar]
  34. Thornhill M. H., Wellicome S. M., Mahiouz D. L., Lanchbury J. S., Kyan-Aung U., Haskard D. O. Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and -independent binding mechanisms. J Immunol. 1991 Jan 15;146(2):592–598. [PubMed] [Google Scholar]
  35. Wallow I. H., Geldner P. S. Endothelial fenestrae in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1980 Oct;19(10):1176–1183. [PubMed] [Google Scholar]
  36. Weller M., Clausen R., Bresgen M., Heimann K., Wiedemann P. Immunoglobulin G, complement factor C3 and lymphocytes in proliferative intraocular disorders. Int Ophthalmol. 1990 Jul;14(4):277–283. doi: 10.1007/BF00159864. [DOI] [PubMed] [Google Scholar]
  37. Wiedemann P. Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration. Surv Ophthalmol. 1992 Mar-Apr;36(5):373–384. doi: 10.1016/0039-6257(92)90115-a. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto T., Yamashita H., Hori S. Electron microscopic observation of preretinal membranes. Jpn J Ophthalmol. 1989;33(2):151–165. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES