Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1994 Jun;78(6):449–453. doi: 10.1136/bjo.78.6.449

Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma.

P Hamard 1, H Hamard 1, J Dufaux 1, S Quesnot 1
PMCID: PMC504821  PMID: 8060927

Abstract

Optic disc blood flow velocity was measured in healthy patients, those with primary open angle glaucoma (POAG), and patients with normal pressure glaucoma (NPG). The velocity of the red blood cells (RBCs) in the capillaries of the optic nerve head (ONH) has been measured with a laser Doppler velocimeter (LDV), and blood viscosity has been evaluated notably by determining the aggregability of the RBCs with an erythroaggregameter. Our results in POAG patients and NPG patients showed that their optic nerve blood flow velocity was reduced and that the aggregability of the RBCs was increased. The hyperaggregability of the erythrocytes is responsible for the increase of the local viscosity in the papillary capillary network. These haemodynamic modifications observed in patients with glaucoma support the hypothesis of a vasogenic mechanism that could impair the optic nerve in glaucoma patients.

Full text

PDF
449

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. R., Hendrickson A. E. Failure of increased intracranial pressure to affect rapid axonal transport at the optic nerve head. Invest Ophthalmol Vis Sci. 1977 May;16(5):423–426. [PubMed] [Google Scholar]
  2. Carter C. J., Brooks D. E., Doyle D. L., Drance S. M. Investigations into a vascular etiology for low-tension glaucoma. Ophthalmology. 1990 Jan;97(1):49–55. doi: 10.1016/s0161-6420(90)32627-1. [DOI] [PubMed] [Google Scholar]
  3. Chien S. Shear dependence of effective cell volume as a determinant of blood viscosity. Science. 1970 May 22;168(3934):977–979. doi: 10.1126/science.168.3934.977. [DOI] [PubMed] [Google Scholar]
  4. Drance S. M., Sweeney V. P., Morgan R. W., Feldman F. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973 Jun;89(6):457–465. doi: 10.1001/archopht.1973.01000040459003. [DOI] [PubMed] [Google Scholar]
  5. Forsdyke D. R., Palfree R. G., Takeda A. Formation of erythrocyte rouleaux in preheated normal serum: roles of albumin polymers and lysophosphatidylcholine. Can J Biochem. 1982 Jul;60(7):705–711. doi: 10.1139/o82-086. [DOI] [PubMed] [Google Scholar]
  6. Foulds W. S. 50th Bowman lecture. 'Blood is thicker than water'. Some haemorheological aspects of ocular disease. Eye (Lond) 1987;1(Pt 3):343–363. doi: 10.1038/eye.1987.55. [DOI] [PubMed] [Google Scholar]
  7. Garcia-Salinas P., Trope G. E., Glynn M. Blood viscosity in ocular hypertension. Can J Ophthalmol. 1988 Dec;23(7):305–307. [PubMed] [Google Scholar]
  8. Glacet-Bernard A., Chabanel A., Coscas G., Lelong F., Samama M. Elévation de l'agrégation érythrocytaire au cours des occlusions veineuses rétiniennes. J Fr Ophtalmol. 1990;13(10):500–505. [PubMed] [Google Scholar]
  9. Hayreh S. S. The pathogenesis of optic nerve lesions in glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976 Mar-Apr;81(2):197–213. [PubMed] [Google Scholar]
  10. Klaver J. H., Greve E. L., Goslinga H., Geijssen H. C., Heuvelmans J. H. Blood and plasma viscosity measurements in patients with glaucoma. Br J Ophthalmol. 1985 Oct;69(10):765–770. doi: 10.1136/bjo.69.10.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Othmane A., Bitbol M., Snabre P., Mills P. Influence of altered phospholipid composition of the membrane outer layer on red blood cell aggregation: relation to shape changes and glycocalyx structure. Eur Biophys J. 1990;18(2):93–99. doi: 10.1007/BF00183268. [DOI] [PubMed] [Google Scholar]
  12. Pillunat L. E., Stodtmeister R., Wilmanns I., Christ T. Autoregulation of ocular blood flow during changes in intraocular pressure. Preliminary results. Graefes Arch Clin Exp Ophthalmol. 1985;223(4):219–223. doi: 10.1007/BF02174065. [DOI] [PubMed] [Google Scholar]
  13. Quigley H. A., Anderson D. R. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci. 1977 Jul;16(7):640–644. [PubMed] [Google Scholar]
  14. Riva C. E., Grunwald J. E., Sinclair S. H. Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci. 1982 Feb;22(2):241–248. [PubMed] [Google Scholar]
  15. Snabre P., Bitbol M., Mills P. Cell disaggregation behavior in shear flow. Biophys J. 1987 May;51(5):795–807. doi: 10.1016/S0006-3495(87)83406-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Trope G. E., Salinas R. G., Glynn M. Blood viscosity in primary open-angle glaucoma. Can J Ophthalmol. 1987 Jun;22(4):202–204. [PubMed] [Google Scholar]
  17. Ulrich W. D., Ulrich C., Bohne B. D. Deficient autoregulation and lengthening of the diffusion distance in the anterior optic nerve circulation in glaucoma: an electro-encephalo-dynamographic investigation. Ophthalmic Res. 1986;18(5):253–259. doi: 10.1159/000265443. [DOI] [PubMed] [Google Scholar]
  18. Weinstein J. M., Duckrow R. B., Beard D., Brennan R. W. Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci. 1983 Dec;24(12):1559–1565. [PubMed] [Google Scholar]
  19. Zannad F., Medeiros C., Voisin P., Bruntz J. F., Stoltz F., Gilgenkrantz J. M. Le syndrome d'hyperviscosité sanguine dans l'hypertension artérielle essentielle. Caractérisation et incidences cliniques. Arch Mal Coeur Vaiss. 1985 Oct;78(11):1706–1709. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES