Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Sep 5;72(Pt 10):1366–1369. doi: 10.1107/S205698901601344X

Crystal structure of 9,9′-{(1E,1′E)-[1,4-phenyl­enebis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­(2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol)

Md Serajul Haque Faizi a, Akram Ali b, Vadim A Potaskalov c,*
PMCID: PMC5050754  PMID: 27746919

The whole mol­ecule of the title compound is generated by inversion symmetry; the central benzene ring being situated about a crystallographic inversion center. The aromatic ring of the julolidine moiety is inclined to the central benzene ring by 33.70 (12)°, and the conformation about the C=N bonds is E. There are two intra­molecular O—H⋯N hydrogen bonds in the mol­ecule, generating S(6) ring motifs.

Keywords: crystal structure, julolidine, Schiff base, 8-hy­droxy­julolidine-9-carboxaldehyde, p-phenyl­enedi­amine, hydrogen bonding, C—H⋯π inter­actions

Abstract

The whole mol­ecule of the title compound, C32H34N2O2, is generated by inversion symmetry; the central benzene ring being situated about the crystallographic inversion center. The aromatic ring of the julolidine moiety is inclined to the central benzene ring by 33.70 (12)°. There are two intra­molecular O—H⋯N hydrogen bonds in the mol­ecule, generating S(6) ring motifs. The conformation about the C=N bonds is E. The fused non-aromatic rings of the julolidine moiety adopt half-chair conformations. In the crystal, adjacent mol­ecules are linked by pairs of C—H⋯π inter­actions, forming a ladder-like structure propagating along the a-axis direction.

Chemical context  

8-Hy­droxy­julolidine-9-carboxaldehyde is a well-known chromophore used in fluorescence chemosensors; chemosensors with the julolidine moiety are usually soluble in aqueous solutions (Narayanaswamy & Govindaraju, 2012; Maity et al., 2011; Na et al., 2013; Noh et al., 2013). Compounds containing the julolidine group display chromogenic naked-eye detection of copper, zinc, iron, and aluminium ions as well as fluoride ions (Choi et al., 2015; Wang et al., 2013a ,b ; Kim et al., 2015; Jo et al., 2015). There are many reports in the literature on 8-hy­droxy­julolidine-9-carboxaldehyde-based Schiff bases and their applications as sensors for metal ions (Park et al., 2014; Lee et al., 2014; Kim et al., 2016). Intra­molecular C—H⋯N hydrogen bonds have been observed in a julolidine-derived structure (Barbero et al., 2012). Julolidine dyes exhibiting excited-state intra­molecular proton transfer (Nano et al., 2015) and julolidine ring-containing compounds are also fluorescent probes for the measurement of cell-membrane viscosity. The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen 2014; Faizi et al., 2016). Recently Choi et al. (2016) have reported on a new chemosensor, similar to the title compound, which is a fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution. This was synthesized by a condensation reaction of 8-hy­droxy­julolidine-9-carboxaldehyde with 2-(amino­meth­yl)benzene­amine in ethanol at room temperature. We report herein on the synthesis and crystal structure of the title julolidine derivative.graphic file with name e-72-01366-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The whole mol­ecule of the title compound is generated by crystallographic inversion symmetry. The conformation about the azomethine C4=N1 bond [1.285 (3) Å] is E. The C3—N1—C4—C5 torsion angle is 172.9 (2)°. The mol­ecule is non-planar, with the dihedral angle between the central benzene ring and the aromatic ring of the julolidine moiety being 33.70 (12)°. Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1). It exhibits two intra­molecular O1—H1A⋯N1 [d(N⋯O) 2.579 (3) Å] hydrogen bonds, which generate S(6) ring motifs (Fig. 1 and Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Unlabelled atoms are generated by the symmetry operation −x, −y + 1, -z. The intra­molecular O—H⋯N hydrogen bonds (see Table 1) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C5–C7/C11/C15/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.85 2.579 (3) 148
C10—H10BCg i 0.97 2.68 3.603 (3) 160

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, adjacent mol­ecules are linked by a pair of C—H⋯π inter­actions (Table 1 and Fig. 2), forming a ladder-like structure propagating along the a-axis direction (Fig. 3).

Figure 2.

Figure 2

A view of the C—H⋯π inter­actions, shown as dashed lines (see Table 1), in the crystal of the title compound.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title compound.

Database survey  

There are very few examples of similar compounds in the literature and, to the best of our knowledge, the new fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution, mentioned in the Chemical context section (Choi et al., 2016) has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) gave 120 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. Of the latter, one compound, viz. 9-{[(4-chlorophen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (CSD refcode: IGALUZ; Kantar et al., 2013), resembles the title compound and also exists in the phenol–imine form with an intra­molecular O—H⋯N hydrogen bond.

Synthesis and crystallization  

An ethano­lic solution of 8-hy­droxy­julolidine-9-carboxalde­hyde (100 mg, 0.46 mmol) was added to p-phenyl­enedi­amine (25 mg, 0.23 mmol) in absolute ethanol (3 ml). Two drops of HCl were added to the reaction solution and it was stirred for 30 min at room temperature. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold EtOH and then with diethyl ether to give 199 mg (85%) of the title compound. Crystals suitable for X-ray diffraction analysis were obtained within three days by slow evaporation of a solution in methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 and C—H = 0.93-0.97 Å, with U iso(H) = 1.5U eq(O) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C32H34N4O2
M r 506.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.1776 (3), 27.9346 (17), 8.7893 (6)
β (°) 96.203 (2)
V3) 1263.79 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.783, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 15125, 2243, 1469
R int 0.073
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.127, 1.02
No. of reflections 2243
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.22

Computer programs: SMART and SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), DIAMOND (Brandenberg & Putz, 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901601344X/su5322sup1.cif

e-72-01366-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901601344X/su5322Isup2.hkl

e-72-01366-Isup2.hkl (108KB, hkl)

Supporting information file. DOI: 10.1107/S205698901601344X/su5322Isup3.cml

CCDC reference: 1500381

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support.

supplementary crystallographic information

Crystal data

C32H34N4O2 F(000) = 540
Mr = 506.63 Dx = 1.331 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3371 reflections
a = 5.1776 (3) Å θ = 2.4–26.5°
b = 27.9346 (17) Å µ = 0.08 mm1
c = 8.7893 (6) Å T = 100 K
β = 96.203 (2)° Block, yellow
V = 1263.79 (14) Å3 0.20 × 0.15 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 2243 independent reflections
Radiation source: fine-focus sealed tube 1469 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.073
/w–scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −6→6
Tmin = 0.783, Tmax = 0.990 k = −33→33
15125 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.7868P] where P = (Fo2 + 2Fc2)/3
2243 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5852 (3) 0.64668 (6) 0.15270 (19) 0.0327 (5)
H1A 0.4785 0.6259 0.1246 0.049*
N2 1.2746 (4) 0.67853 (7) 0.5427 (2) 0.0250 (5)
N1 0.3470 (4) 0.56564 (7) 0.1548 (2) 0.0259 (5)
C3 0.1732 (4) 0.53146 (8) 0.0816 (3) 0.0216 (6)
C11 1.0954 (4) 0.64728 (8) 0.4704 (3) 0.0208 (6)
C7 1.0677 (4) 0.60049 (8) 0.5312 (3) 0.0212 (6)
C1 −0.2269 (4) 0.51736 (9) −0.0764 (3) 0.0249 (6)
H1 −0.3807 0.5292 −0.1271 0.030*
C15 0.9341 (4) 0.66163 (8) 0.3388 (3) 0.0229 (6)
C16 0.7394 (5) 0.63101 (9) 0.2775 (3) 0.0250 (6)
C6 0.8730 (4) 0.57163 (9) 0.4650 (3) 0.0245 (6)
H6 0.8546 0.5412 0.5055 0.029*
C2 −0.0546 (4) 0.54825 (9) 0.0030 (3) 0.0240 (6)
H2 −0.0918 0.5808 0.0039 0.029*
C5 0.7015 (5) 0.58567 (8) 0.3400 (3) 0.0241 (6)
C4 0.5029 (5) 0.55395 (9) 0.2728 (3) 0.0277 (6)
H4 0.4865 0.5239 0.3161 0.033*
C8 1.2531 (5) 0.58325 (9) 0.6635 (3) 0.0277 (6)
H8A 1.3963 0.5663 0.6250 0.033*
H8B 1.1643 0.5611 0.7251 0.033*
C12 1.3361 (5) 0.72291 (9) 0.4669 (3) 0.0305 (6)
H12A 1.4648 0.7165 0.3971 0.037*
H12B 1.4101 0.7456 0.5429 0.037*
C10 1.4682 (5) 0.66195 (9) 0.6634 (3) 0.0305 (6)
H10A 1.5310 0.6889 0.7264 0.037*
H10B 1.6144 0.6484 0.6181 0.037*
C14 0.9740 (5) 0.70887 (9) 0.2652 (3) 0.0307 (6)
H14A 0.8078 0.7212 0.2203 0.037*
H14B 1.0841 0.7046 0.1837 0.037*
C13 1.0976 (5) 0.74444 (9) 0.3793 (3) 0.0313 (6)
H13A 1.1453 0.7730 0.3264 0.038*
H13B 0.9744 0.7535 0.4499 0.038*
C9 1.3577 (5) 0.62498 (9) 0.7617 (3) 0.0309 (6)
H9A 1.2190 0.6390 0.8130 0.037*
H9B 1.4917 0.6138 0.8393 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0348 (11) 0.0320 (11) 0.0288 (10) −0.0051 (8) −0.0072 (9) 0.0013 (8)
N2 0.0219 (11) 0.0267 (12) 0.0257 (12) −0.0030 (10) −0.0006 (9) −0.0002 (9)
N1 0.0213 (11) 0.0324 (13) 0.0233 (11) −0.0016 (10) −0.0003 (10) −0.0044 (10)
C3 0.0198 (12) 0.0261 (13) 0.0198 (13) −0.0057 (11) 0.0060 (11) −0.0059 (11)
C11 0.0174 (12) 0.0239 (14) 0.0219 (13) −0.0019 (10) 0.0057 (11) −0.0050 (10)
C7 0.0213 (13) 0.0239 (14) 0.0192 (13) 0.0009 (11) 0.0061 (11) −0.0041 (11)
C1 0.0187 (13) 0.0316 (15) 0.0241 (14) 0.0004 (11) 0.0016 (11) −0.0006 (11)
C15 0.0248 (13) 0.0244 (13) 0.0202 (13) −0.0008 (11) 0.0049 (11) 0.0019 (11)
C16 0.0229 (13) 0.0350 (15) 0.0165 (12) 0.0061 (12) −0.0010 (11) −0.0004 (11)
C6 0.0273 (14) 0.0252 (14) 0.0217 (13) 0.0020 (11) 0.0065 (11) −0.0004 (11)
C2 0.0239 (13) 0.0233 (14) 0.0251 (14) −0.0017 (11) 0.0042 (11) −0.0038 (11)
C5 0.0263 (14) 0.0236 (14) 0.0234 (14) −0.0039 (11) 0.0070 (12) −0.0052 (11)
C4 0.0312 (14) 0.0263 (14) 0.0270 (14) 0.0006 (12) 0.0098 (12) −0.0024 (12)
C8 0.0297 (15) 0.0305 (15) 0.0229 (14) 0.0056 (12) 0.0030 (12) 0.0031 (11)
C12 0.0275 (14) 0.0250 (14) 0.0394 (16) −0.0064 (12) 0.0048 (12) −0.0054 (12)
C10 0.0253 (13) 0.0350 (15) 0.0296 (15) 0.0023 (12) −0.0043 (12) −0.0082 (12)
C14 0.0289 (14) 0.0323 (15) 0.0305 (15) −0.0034 (12) 0.0015 (12) 0.0033 (12)
C13 0.0356 (15) 0.0255 (14) 0.0329 (15) −0.0034 (12) 0.0047 (13) 0.0045 (12)
C9 0.0292 (14) 0.0384 (16) 0.0233 (14) 0.0096 (13) −0.0056 (11) −0.0031 (12)

Geometric parameters (Å, º)

O1—C16 1.358 (3) C6—H6 0.9300
O1—H1A 0.8200 C2—H2 0.9300
N2—C11 1.378 (3) C5—C4 1.435 (3)
N2—C10 1.454 (3) C4—H4 0.9300
N2—C12 1.459 (3) C8—C9 1.515 (3)
N1—C4 1.285 (3) C8—H8A 0.9700
N1—C3 1.418 (3) C8—H8B 0.9700
C3—C2 1.383 (3) C12—C13 1.508 (3)
C3—C1i 1.394 (3) C12—H12A 0.9700
C11—C15 1.410 (3) C12—H12B 0.9700
C11—C7 1.425 (3) C10—C9 1.499 (4)
C7—C6 1.370 (3) C10—H10A 0.9700
C7—C8 1.505 (3) C10—H10B 0.9700
C1—C2 1.376 (3) C14—C13 1.505 (3)
C1—C3i 1.394 (3) C14—H14A 0.9700
C1—H1 0.9300 C14—H14B 0.9700
C15—C16 1.386 (3) C13—H13A 0.9700
C15—C14 1.494 (3) C13—H13B 0.9700
C16—C5 1.403 (3) C9—H9A 0.9700
C6—C5 1.392 (3) C9—H9B 0.9700
C16—O1—H1A 109.5 C7—C8—H8A 109.5
C11—N2—C10 120.75 (19) C9—C8—H8A 109.5
C11—N2—C12 119.8 (2) C7—C8—H8B 109.5
C10—N2—C12 115.88 (19) C9—C8—H8B 109.5
C4—N1—C3 120.5 (2) H8A—C8—H8B 108.1
C2—C3—C1i 118.6 (2) N2—C12—C13 111.4 (2)
C2—C3—N1 117.6 (2) N2—C12—H12A 109.3
C1i—C3—N1 123.7 (2) C13—C12—H12A 109.3
N2—C11—C15 120.5 (2) N2—C12—H12B 109.3
N2—C11—C7 119.9 (2) C13—C12—H12B 109.3
C15—C11—C7 119.6 (2) H12A—C12—H12B 108.0
C6—C7—C11 118.7 (2) N2—C10—C9 111.4 (2)
C6—C7—C8 121.2 (2) N2—C10—H10A 109.4
C11—C7—C8 120.1 (2) C9—C10—H10A 109.4
C2—C1—C3i 120.6 (2) N2—C10—H10B 109.4
C2—C1—H1 119.7 C9—C10—H10B 109.4
C3i—C1—H1 119.7 H10A—C10—H10B 108.0
C16—C15—C11 119.0 (2) C15—C14—C13 111.3 (2)
C16—C15—C14 120.4 (2) C15—C14—H14A 109.4
C11—C15—C14 120.6 (2) C13—C14—H14A 109.4
O1—C16—C15 117.0 (2) C15—C14—H14B 109.4
O1—C16—C5 120.8 (2) C13—C14—H14B 109.4
C15—C16—C5 122.1 (2) H14A—C14—H14B 108.0
C7—C6—C5 123.1 (2) C12—C13—C14 110.0 (2)
C7—C6—H6 118.4 C12—C13—H13A 109.7
C5—C6—H6 118.4 C14—C13—H13A 109.7
C1—C2—C3 120.8 (2) C12—C13—H13B 109.7
C1—C2—H2 119.6 C14—C13—H13B 109.7
C3—C2—H2 119.6 H13A—C13—H13B 108.2
C6—C5—C16 117.3 (2) C10—C9—C8 109.7 (2)
C6—C5—C4 121.2 (2) C10—C9—H9A 109.7
C16—C5—C4 121.4 (2) C8—C9—H9A 109.7
N1—C4—C5 122.3 (2) C10—C9—H9B 109.7
N1—C4—H4 118.8 C8—C9—H9B 109.7
C5—C4—H4 118.8 H9A—C9—H9B 108.2
C7—C8—C9 110.7 (2)

Symmetry code: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C5–C7/C11/C15/C16 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.82 1.85 2.579 (3) 148
C10—H10B···Cgii 0.97 2.68 3.603 (3) 160

Symmetry code: (ii) x+1, y, z.

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Barbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177–1183.
  3. Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472.
  6. Choi, Y. W., You, G. R., Lee, J. J. & Kim, C. (2016). Inorg. Chem. Commun. 63, 35–38.
  7. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
  8. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. [DOI] [PMC free article] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587.
  11. Kantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883. [DOI] [PMC free article] [PubMed]
  12. Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigm. 129, 43–53.
  13. Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239.
  14. Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659. [DOI] [PubMed]
  15. Maity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152–11161. [DOI] [PubMed]
  16. Na, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342–345.
  17. Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354. [DOI] [PubMed]
  18. Narayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304–310.
  19. Noh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016–1021.
  20. Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Wang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749–755.
  24. Wang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475–480.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901601344X/su5322sup1.cif

e-72-01366-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901601344X/su5322Isup2.hkl

e-72-01366-Isup2.hkl (108KB, hkl)

Supporting information file. DOI: 10.1107/S205698901601344X/su5322Isup3.cml

CCDC reference: 1500381

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES