Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Sep 5;72(Pt 10):1374–1376. doi: 10.1107/S2056989016013815

Crystal structure of trans-di­aqua­bis­(4-cyano­benzoato-κO)bis­(N,N-di­ethyl­nicotinamide-κN)zinc(II)

Nurcan Akduran a, Hacali Necefoğlu b,c, Ömer Aydoğdu b, Tuncer Hökelek d,*
PMCID: PMC5050756  PMID: 27746921

In the crystal, the title centrosymmetric ZnII complex mol­ecules are linked by O—H⋯O hydrogen bonds into supra­molecular chains propagating along the [110] direction.

Keywords: crystal structure, zinc complex, benzoate, nicotinamide derivatives

Abstract

In the title complex, [Zn(C8H4NO2)2(C10H14N2O)2(H2O)2], the ZnII cation, located on an inversion centre, is coordinated by two water mol­ecules, two 4-cyano­benzoate (CB) anions and two di­ethyl­nicotinamide (DENA) ligands in a distorted N2O4 octa­hedral geometry. In the mol­ecule, the dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 9.50 (14)°, while the benzene and pyridine rings are oriented at a dihedral angle of 56.99 (5)°. The water mol­ecules exhibit both an intra­molecular hydrogen bond [to the non-coordinating carboxyl­ate O atom, enclosing an S(6) hydrogen-bonding motif, where O⋯O = 2.6419 (19) Å] and an inter­molecular hydrogen bond [to the amide carbonyl O atom, enclosing an R 2 2(16) ring motif, where O⋯O = 2.827 (2) Å]; the latter lead to the formation of supra­molecular chains propagating along the [110] direction.

Chemical context  

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The structures of some complexes obtained from the reactions of transition metal(II) ions with NA and DENA as ligands, e.g. [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a ) and [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b ), have been the subject of much inter­est in our laboratory.graphic file with name e-72-01374-scheme1.jpg

The structure-function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid deriv­atives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974). In this context, we synthesized a ZnII-containing compound with 4-cyano­benzoate (CB) and DENA ligands, namely trans-di­aqua­bis­(4-cyano­benzoato-κO)bis­(N,N-di­ethyl­nicotinamide-κN)zinc(II), [Zn(DENA)2(CB)2(H2O)2], and report herein its crystal structure.

Structural commentary  

The asymmetric unit of the crystal structure of the title complex contains one ZnII atom located on an inversion centre, one 4-cyano­benzoate (CB) ligand, one N,N-di­ethyl­nicotinamide (DENA) ligand and one water mol­ecule, all ligands coordinating to the ZnII atom in a monodentate manner (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title complex, showing the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are generated by the symmetry operation −x, −y, −z. Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—Hw⋯Oc (w = water and c = non-coordinating carboxyl­ate O atom) hydrogen bonds, enclosing S(6) hydrogen-bonding motifs, are shown as dashed lines.

The two carboxyl­ate O atoms (O2 and O2i) of the two symmetry-related monodentate CB anions and the two symmetry-related water O atoms (O4 and O4i) around the Zn1 atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N2 and N2i) of the two symmetry-related monodentate DENA ligands in the axial positions [symmetry code: (i) −x, −y, −z] (Fig. 1).

In the carboxyl­ate groups, the C—O bonds for coordinating O atoms are 0.0148 (19) Å longer than those of the non-coordinating ones [C1—O1 = 1.2436 (19) Å and C1—O2 = 1.2584 (18) Å], indicating delocalized bonding arrangements rather than localized single and double bonds. The Zn—O bond lengths are 2.1503 (11) Å (for water O atoms) and 2.0842 (10) Å (for benzoate O atoms) and the Zn—N bond length is 2.1501 (11) Å, the Zn—O bond lengths for water oxygen atoms are ca 0.07 Å longer than those involving the benzoate oxygen atoms. The Zn1 atom lies 0.7093 (1) Å below the planar (O1/O2/C1) carboxyl­ate group. The O—Zn—O and O–Zn—N bond angles range from 87.64 (5) to 92.36 (5)°.

The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene ring (C2–C7) is 9.50 (14)°, while the benzene and pyridine (N2/C9–C14) rings are oriented at a dihedral angle of 56.99 (5)°.

Supra­molecular features  

Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds (Table 1) link two of the water ligands to the CB anions, enclosing S(6) hydrogen-bonding motifs (Fig. 1). The other water H atom is involved in inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotinamide) hydrogen bonds (Table 1), enclosing Inline graphic(16) ring motifs and leading to the formation of infinite chains (Fig. 2) propagating along the [110] direction (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O1i 0.83 (2) 1.84 (2) 2.6419 (19) 161 (2)
O4—H42⋯O3ii 0.82 (2) 2.03 (2) 2.827 (2) 163 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Part of the supra­molecular chain of the title compound. Inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotin­amide) hydrogen bonds, enclosing Inline graphic(16) ring motifs, are shown as dashed lines. The non-bonding H atoms have been omitted for clarity.

Figure 3.

Figure 3

Part of the crystal structure. Intra- and inter­molecular (O—Hw⋯Oc and O—Hw⋯ODENA, respectively) hydrogen bonds are shown as dashed lines (see Table 1). The non-bonding H atoms have been omitted for clarity.

Synthesis and crystallization  

The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (50 ml) and di­ethyl­nicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving translucent intense colourless single crystals.

Refinement  

The experimental details including the crystal data, data collection and refinement are summarized in Table 2. Atoms H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methyl­ene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with U iso(H) = k × U eq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic and methyl­ene H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(C8H4NO2)2(C10H14N2O)2(H2O)2]
M r 750.13
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 7.4916 (3), 8.5915 (3), 15.0343 (6)
α, β, γ (°) 86.363 (3), 75.894 (2), 74.390 (2)
V3) 903.87 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.45 × 0.30 × 0.24
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.74, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 19149, 4366, 4029
R int 0.020
(sin θ/λ)max−1) 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.084, 1.06
No. of reflections 4366
No. of parameters 242
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.23

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016013815/xu5890sup1.cif

e-72-01374-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013815/xu5890Isup2.hkl

e-72-01374-Isup2.hkl (209.6KB, hkl)

CCDC reference: 1501337

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by the Kafkas University, Scientific Research Projects Coordinator (project No. 2016-FM-49).

supplementary crystallographic information

Crystal data

[Zn(C8H4NO2)2(C10H14N2O)2(H2O)2] Z = 1
Mr = 750.13 F(000) = 392
Triclinic, P1 Dx = 1.378 Mg m3
a = 7.4916 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5915 (3) Å Cell parameters from 9994 reflections
c = 15.0343 (6) Å θ = 2.8–28.2°
α = 86.363 (3)° µ = 0.74 mm1
β = 75.894 (2)° T = 296 K
γ = 74.390 (2)° Prism, translucent intense colourless
V = 903.87 (6) Å3 0.45 × 0.30 × 0.24 mm

Data collection

Bruker SMART BREEZE CCD diffractometer 4366 independent reflections
Radiation source: fine-focus sealed tube 4029 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −9→9
Tmin = 0.74, Tmax = 0.84 k = −11→11
19149 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.2769P] where P = (Fo2 + 2Fc2)/3
4366 reflections (Δ/σ)max < 0.001
242 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.0000 0.0000 0.0000 0.02730 (8)
O1 0.10666 (18) 0.0679 (2) −0.22778 (9) 0.0585 (4)
O2 0.23197 (15) 0.01976 (13) −0.10544 (7) 0.0340 (2)
O3 0.51295 (19) −0.62718 (18) −0.11834 (9) 0.0571 (4)
O4 0.19075 (17) −0.10842 (16) 0.08623 (9) 0.0414 (3)
H41 0.115 (3) −0.110 (3) 0.1366 (17) 0.056 (7)*
H42 0.277 (3) −0.191 (3) 0.0848 (16) 0.059 (7)*
N1 1.1465 (3) −0.2028 (3) −0.46622 (14) 0.0755 (6)
N2 0.02013 (16) −0.22996 (14) −0.05596 (8) 0.0288 (2)
N3 0.4843 (2) −0.58488 (17) −0.26504 (9) 0.0402 (3)
C1 0.2428 (2) 0.02304 (18) −0.19037 (10) 0.0324 (3)
C2 0.4408 (2) −0.03327 (17) −0.25173 (10) 0.0304 (3)
C3 0.4653 (2) −0.0552 (2) −0.34513 (11) 0.0423 (4)
H3 0.3593 −0.0388 −0.3698 0.051*
C4 0.6461 (3) −0.1012 (2) −0.40159 (11) 0.0466 (4)
H4 0.6621 −0.1157 −0.4641 0.056*
C5 0.8044 (2) −0.12572 (19) −0.36423 (11) 0.0383 (3)
C6 0.7815 (2) −0.1071 (2) −0.27117 (12) 0.0415 (4)
H6 0.8876 −0.1252 −0.2463 0.050*
C7 0.5995 (2) −0.0614 (2) −0.21525 (11) 0.0368 (3)
H7 0.5836 −0.0493 −0.1525 0.044*
C8 0.9951 (3) −0.1689 (2) −0.42235 (13) 0.0507 (4)
C9 −0.1333 (2) −0.28196 (18) −0.05414 (10) 0.0323 (3)
H9 −0.2528 −0.2183 −0.0253 0.039*
C10 −0.1218 (2) −0.4269 (2) −0.09346 (12) 0.0379 (3)
H10 −0.2314 −0.4600 −0.0909 0.045*
C11 0.0555 (2) −0.52178 (18) −0.13656 (11) 0.0386 (3)
H11 0.0669 −0.6187 −0.1644 0.046*
C12 0.2158 (2) −0.47000 (17) −0.13758 (10) 0.0317 (3)
C13 0.1916 (2) −0.32445 (17) −0.09573 (10) 0.0302 (3)
H13 0.2994 −0.2907 −0.0952 0.036*
C14 0.4178 (2) −0.56899 (17) −0.17441 (11) 0.0354 (3)
C15 0.3800 (3) −0.5002 (2) −0.33283 (12) 0.0488 (4)
H15A 0.4514 −0.4299 −0.3693 0.059*
H15B 0.2577 −0.4329 −0.3008 0.059*
C16 0.3474 (3) −0.6144 (3) −0.39581 (16) 0.0663 (6)
H16A 0.2720 −0.5537 −0.4359 0.099*
H16B 0.2815 −0.6874 −0.3600 0.099*
H16C 0.4680 −0.6748 −0.4317 0.099*
C17 0.6830 (3) −0.6752 (2) −0.30132 (13) 0.0481 (4)
H17A 0.6893 −0.7410 −0.3527 0.058*
H17B 0.7267 −0.7473 −0.2542 0.058*
C18 0.8137 (4) −0.5660 (4) −0.3324 (2) 0.0831 (8)
H18A 0.9426 −0.6304 −0.3527 0.125*
H18B 0.8053 −0.4984 −0.2823 0.125*
H18C 0.7766 −0.4997 −0.3821 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02409 (12) 0.02632 (12) 0.02797 (13) −0.00158 (8) −0.00370 (8) −0.00585 (8)
O1 0.0317 (6) 0.0954 (11) 0.0390 (7) −0.0015 (6) −0.0080 (5) 0.0024 (7)
O2 0.0289 (5) 0.0415 (6) 0.0297 (5) −0.0098 (4) −0.0014 (4) −0.0061 (4)
O3 0.0501 (7) 0.0621 (8) 0.0419 (7) 0.0212 (6) −0.0165 (6) −0.0093 (6)
O4 0.0310 (6) 0.0488 (7) 0.0375 (6) 0.0048 (5) −0.0113 (5) −0.0020 (5)
N1 0.0492 (10) 0.0958 (16) 0.0549 (11) 0.0045 (10) 0.0111 (9) −0.0003 (10)
N2 0.0268 (6) 0.0263 (5) 0.0297 (6) −0.0019 (4) −0.0049 (5) −0.0032 (4)
N3 0.0392 (7) 0.0349 (7) 0.0353 (7) 0.0061 (5) −0.0050 (6) −0.0021 (5)
C1 0.0295 (7) 0.0314 (7) 0.0343 (7) −0.0074 (5) −0.0040 (6) −0.0017 (6)
C2 0.0314 (7) 0.0303 (7) 0.0284 (7) −0.0094 (5) −0.0033 (6) −0.0001 (5)
C3 0.0372 (8) 0.0564 (10) 0.0321 (8) −0.0091 (7) −0.0094 (6) −0.0015 (7)
C4 0.0471 (10) 0.0597 (11) 0.0266 (7) −0.0070 (8) −0.0034 (7) −0.0035 (7)
C5 0.0343 (8) 0.0374 (8) 0.0349 (8) −0.0048 (6) 0.0025 (6) −0.0014 (6)
C6 0.0318 (8) 0.0527 (10) 0.0379 (8) −0.0086 (7) −0.0059 (6) −0.0035 (7)
C7 0.0334 (8) 0.0469 (9) 0.0287 (7) −0.0099 (6) −0.0040 (6) −0.0046 (6)
C8 0.0421 (10) 0.0553 (11) 0.0406 (9) −0.0013 (8) 0.0036 (8) 0.0016 (8)
C9 0.0281 (7) 0.0340 (7) 0.0323 (7) −0.0042 (5) −0.0067 (6) −0.0002 (6)
C10 0.0364 (8) 0.0381 (8) 0.0436 (9) −0.0124 (6) −0.0148 (7) 0.0002 (7)
C11 0.0466 (9) 0.0285 (7) 0.0422 (8) −0.0065 (6) −0.0158 (7) −0.0061 (6)
C12 0.0349 (7) 0.0258 (6) 0.0296 (7) 0.0007 (5) −0.0077 (6) −0.0015 (5)
C13 0.0276 (7) 0.0275 (6) 0.0323 (7) −0.0032 (5) −0.0052 (5) −0.0024 (5)
C14 0.0373 (8) 0.0257 (6) 0.0367 (8) 0.0032 (6) −0.0080 (6) −0.0054 (6)
C15 0.0511 (10) 0.0477 (10) 0.0367 (9) 0.0030 (8) −0.0089 (8) 0.0050 (7)
C16 0.0596 (13) 0.0810 (16) 0.0555 (12) −0.0073 (11) −0.0190 (10) −0.0058 (11)
C17 0.0395 (9) 0.0476 (9) 0.0434 (9) 0.0054 (7) −0.0015 (7) −0.0057 (8)
C18 0.0576 (14) 0.099 (2) 0.093 (2) −0.0287 (14) −0.0102 (13) 0.0008 (16)

Geometric parameters (Å, º)

Zn1—O2 2.0842 (10) C6—H6 0.9300
Zn1—O2i 2.0842 (10) C7—C6 1.384 (2)
Zn1—O4 2.1503 (11) C7—H7 0.9300
Zn1—O4i 2.1503 (11) C8—N1 1.135 (3)
Zn1—N2 2.1501 (11) C9—C10 1.385 (2)
Zn1—N2i 2.1501 (11) C9—H9 0.9300
O1—C1 1.2436 (19) C10—H10 0.9300
O2—C1 1.2584 (18) C11—C10 1.383 (2)
O3—C14 1.231 (2) C11—H11 0.9300
O4—H41 0.83 (2) C12—C11 1.385 (2)
O4—H42 0.82 (2) C12—C14 1.509 (2)
N2—C9 1.3348 (19) C13—C12 1.384 (2)
N2—C13 1.3389 (17) C13—H13 0.9300
N3—C14 1.334 (2) C15—C16 1.510 (3)
N3—C15 1.472 (2) C15—H15A 0.9700
N3—C17 1.467 (2) C15—H15B 0.9700
C1—C2 1.513 (2) C16—H16A 0.9600
C2—C3 1.389 (2) C16—H16B 0.9600
C2—C7 1.386 (2) C16—H16C 0.9600
C3—C4 1.380 (2) C17—C18 1.508 (3)
C3—H3 0.9300 C17—H17A 0.9700
C4—H4 0.9300 C17—H17B 0.9700
C5—C4 1.393 (2) C18—H18A 0.9600
C5—C6 1.382 (2) C18—H18B 0.9600
C5—C8 1.446 (2) C18—H18C 0.9600
O2—Zn1—O2i 180.00 (7) C6—C7—H7 119.7
O2—Zn1—O4 89.94 (5) N1—C8—C5 178.4 (2)
O2i—Zn1—O4 90.06 (5) N2—C9—C10 122.61 (14)
O2—Zn1—O4i 90.06 (5) N2—C9—H9 118.7
O2i—Zn1—O4i 89.94 (5) C10—C9—H9 118.7
O2—Zn1—N2 88.48 (4) C9—C10—H10 120.6
O2i—Zn1—N2 91.52 (4) C11—C10—C9 118.88 (14)
O2—Zn1—N2i 91.52 (4) C11—C10—H10 120.6
O2i—Zn1—N2i 88.48 (4) C10—C11—C12 118.92 (14)
O4i—Zn1—O4 180.00 (10) C10—C11—H11 120.5
N2—Zn1—O4 92.36 (5) C12—C11—H11 120.5
N2i—Zn1—O4 87.64 (5) C11—C12—C14 124.06 (13)
N2—Zn1—O4i 87.64 (5) C13—C12—C11 118.44 (13)
N2i—Zn1—O4i 92.36 (5) C13—C12—C14 117.28 (13)
N2i—Zn1—N2 180.00 (6) N2—C13—C12 122.99 (13)
C1—O2—Zn1 127.55 (9) N2—C13—H13 118.5
Zn1—O4—H41 101.6 (16) C12—C13—H13 118.5
Zn1—O4—H42 135.9 (16) O3—C14—N3 123.94 (14)
H41—O4—H42 106 (2) O3—C14—C12 117.46 (14)
C9—N2—Zn1 122.37 (9) N3—C14—C12 118.58 (13)
C9—N2—C13 118.12 (12) N3—C15—C16 112.80 (17)
C13—N2—Zn1 119.50 (9) N3—C15—H15A 109.0
C14—N3—C15 124.36 (14) N3—C15—H15B 109.0
C14—N3—C17 118.81 (14) C16—C15—H15A 109.0
C17—N3—C15 116.34 (14) C16—C15—H15B 109.0
O1—C1—O2 126.05 (14) H15A—C15—H15B 107.8
O1—C1—C2 117.65 (14) C15—C16—H16A 109.5
O2—C1—C2 116.30 (13) C15—C16—H16B 109.5
C3—C2—C1 120.47 (14) C15—C16—H16C 109.5
C7—C2—C3 119.42 (14) H16A—C16—H16B 109.5
C7—C2—C1 120.10 (13) H16A—C16—H16C 109.5
C2—C3—H3 119.8 H16B—C16—H16C 109.5
C4—C3—C2 120.43 (15) N3—C17—C18 112.50 (18)
C4—C3—H3 119.8 N3—C17—H17A 109.1
C3—C4—C5 119.49 (15) N3—C17—H17B 109.1
C3—C4—H4 120.3 C18—C17—H17A 109.1
C5—C4—H4 120.3 C18—C17—H17B 109.1
C4—C5—C8 120.56 (16) H17A—C17—H17B 107.8
C6—C5—C4 120.54 (15) C17—C18—H18A 109.5
C6—C5—C8 118.90 (16) C17—C18—H18B 109.5
C5—C6—C7 119.41 (15) C17—C18—H18C 109.5
C5—C6—H6 120.3 H18A—C18—H18B 109.5
C7—C6—H6 120.3 H18A—C18—H18C 109.5
C2—C7—H7 119.7 H18B—C18—H18C 109.5
C6—C7—C2 120.68 (15)
O4—Zn1—O2—C1 153.35 (13) C15—N3—C17—C18 73.3 (2)
O4i—Zn1—O2—C1 −26.65 (13) O1—C1—C2—C3 −8.8 (2)
N2—Zn1—O2—C1 60.99 (12) O1—C1—C2—C7 170.29 (16)
N2i—Zn1—O2—C1 −119.01 (12) O2—C1—C2—C3 171.11 (15)
O2—Zn1—N2—C9 −144.71 (12) O2—C1—C2—C7 −9.8 (2)
O2i—Zn1—N2—C9 35.29 (12) C1—C2—C3—C4 177.77 (16)
O2—Zn1—N2—C13 34.08 (11) C7—C2—C3—C4 −1.4 (3)
O2i—Zn1—N2—C13 −145.92 (11) C1—C2—C7—C6 −177.60 (15)
O4—Zn1—N2—C9 125.41 (12) C3—C2—C7—C6 1.5 (2)
O4i—Zn1—N2—C9 −54.59 (12) C2—C3—C4—C5 0.0 (3)
O4—Zn1—N2—C13 −55.80 (11) C6—C5—C4—C3 1.2 (3)
O4i—Zn1—N2—C13 124.20 (11) C8—C5—C4—C3 −178.01 (18)
Zn1—O2—C1—O1 25.4 (2) C4—C5—C6—C7 −1.0 (3)
Zn1—O2—C1—C2 −154.52 (10) C8—C5—C6—C7 178.20 (17)
Zn1—N2—C9—C10 177.24 (12) C2—C7—C6—C5 −0.4 (3)
C13—N2—C9—C10 −1.6 (2) N2—C9—C10—C11 −0.1 (2)
Zn1—N2—C13—C12 −176.49 (11) C12—C11—C10—C9 1.1 (2)
C9—N2—C13—C12 2.3 (2) C13—C12—C11—C10 −0.4 (2)
C15—N3—C14—O3 −172.38 (18) C14—C12—C11—C10 174.11 (15)
C15—N3—C14—C12 5.8 (2) C11—C12—C14—O3 −107.28 (19)
C17—N3—C14—O3 −0.7 (3) C11—C12—C14—N3 74.5 (2)
C17—N3—C14—C12 177.46 (14) C13—C12—C14—O3 67.3 (2)
C14—N3—C15—C16 −121.41 (19) C13—C12—C14—N3 −111.00 (17)
C17—N3—C15—C16 66.7 (2) N2—C13—C12—C11 −1.4 (2)
C14—N3—C17—C18 −99.1 (2) N2—C13—C12—C14 −176.26 (13)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H41···O1i 0.83 (2) 1.84 (2) 2.6419 (19) 161 (2)
O4—H42···O3ii 0.82 (2) 2.03 (2) 2.827 (2) 163 (2)

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y−1, −z.

References

  1. Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.
  2. Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.
  3. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  4. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  5. Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. [DOI] [PMC free article] [PubMed]
  8. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546. [DOI] [PMC free article] [PubMed]
  9. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. [DOI] [PubMed]
  10. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016013815/xu5890sup1.cif

e-72-01374-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013815/xu5890Isup2.hkl

e-72-01374-Isup2.hkl (209.6KB, hkl)

CCDC reference: 1501337

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES