Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Sep 5;72(Pt 10):1408–1411. doi: 10.1107/S2056989016013797

Crystal structure of an aryl cyclo­hexyl nona­noid, an anti­proliferative mol­ecule isolated from the spice Myristica malabarica

Ajoy Kumar Bauri a, Sabine Foro b, Nhu Quynh Nguyen Do c,*
PMCID: PMC5050765  PMID: 27746930

An aryl cyclo­hexyl nona­noid, an anti­proliferative compound, has been extracted from spice from M. myristica using gradient solvent elution. In the crystal, inter­molecular hy­droxy O—H⋯Ocarbon­yl hydrogen-bonding inter­actions generate large 36-membered centrosymmetric cyclic dimers, which are then extended into one-dimensional ribbons along [1Inline graphic1].

Keywords: crystal structure, aryl cyclo­hexyl nona­noid, M. malabarica, anti­proliferative activity, atom disorder and refinement, hydrogen bonding

Abstract

The title compound, C21H26O5, an aryl cyclo­hexyl nona­noid {systematic name: 3,5-dihy­droxy-2-[9-(4-hy­droxy­phen­yl)nona­noyl]cyclo­hexa-2,4-dien-1-one}, extracted from the spice plant Myristica malabarica comprises two ring components, a 4-hy­droxy­phenyl moiety and a 3,5-di­hydroxy­cyclo­hexa-2,4-dienone moiety linked by a nona­noyl chain. The mol­ecule has an extended essentially planar conformation stabilized by an intra­molecular hy­droxy O—H⋯Ocarbon­yl hydrogen bond, giving a dihedral angle between the two ring systems of 6.37 (15)°. The C, O and H atoms associated with one of the hy­droxy groups of the cyclo­hexa­dienone component are disordered over two sets of sites with site occupancies of 0.6972 and 0.3028. In the crystal, hy­droxy O—H⋯O hydrogen bonds to carbonyl O-atom acceptors form large centrosymmetric R 2 2(36) cyclic dimers, which are further extended into supra­molecular one-dimensional ribbon structures along [1-11].

Chemical context  

The fruit rind of M. malabarica (family: Myristicaceae) is popularly known as Rampatri in Mumbai, India. It is used as an exotic spice in various Indian cuisines and also as a phytomedicine for the treatment of various kinds of ailments (Forrest & Heacock, 1972, and references therein). Its major pharmacological activities are credited with hepatoprotective (Morita et al., 2003), anti-carcinogenic (Patro et al., 2010; Maity et al., 2012), anti-leishmanial (Sen et al., 2007), anti-ulceral (Banerjee et al., 2007; Banerjee et al., 2008), anti­proliferative (Manna et al., 2012, 2015, 2016; Tyagi et al., 2014), anti-inflammatory (Maity et al., 2012), anti-quorum sensing (Chong et al., 2011) and anti-thrombotic (Olajide et al., 1999; Patro et al., 2005, 2010) properties and it is found as a constituent in many ayurvedic preparations such as Pasupasi. Previous phytochemical investigations of the fruit rind of M. malabarica revealed the presence of four novel diaryl nona­noids named as malabaricones A–D (Purushothaman et al., 1977) and aryl tetra­deca­noid (Bauri et al., 2016). In addition, a lignan malabaricanol A and an isoflavone have been isolated from the heart wood of this plant (Purushothaman et al., 1974; Talukdar et al., 2000). A detailed phytochemical investigation of a methanol extract of the fruit rind of M. malabarica has been carried out. We have isolated a new type of mol­ecule named as an aryl cyclo­hexyl nona­noid, the title compound C21H26O5, as a very minor constituent in addition to the reported compounds malabaricones A–D and aryl tetra­deca­noid. This mol­ecule has exhibited anti-proliferative activity against various cancer cell lines such as A431, U937, MOLT-3, A549 and A2780 by using MTT and western blotting assay (unpublished result). Therefore, based on experimental results, it may be inferred that this fruit rind of M. malabarica may be used as a health promoter, a natural remedy which can be prescribed as a botanical dietary supplement to patients who are suffering from these kinds of health problems. The structure of the title compound is reported herein.graphic file with name e-72-01408-scheme1.jpg

Structural commentary  

The title compound comprises three mol­ecular components, a 4-hy­droxy­phenyl ring, a 3,5-di­hydroxcyclo­hexa-2,5-dienone ring and a bridging nona­noyl moiety (Fig. 1). The cyclo­hexa­dienone ring has a puckered conformation. There is an intra­molecular O3—H⋯O4carbon­yl bond enclosing an S(6) ring motif, which aids in stabilizing the essentially planar overall mol­ecular conformation [inter-ring dihedral angle = 6.37 (15)° and r.m.s. deviation of fitted atoms = 0.2549 Å]. The C, O and H atoms associated with the second hy­droxy group of the cyclo­hexa­dienone component are disordered over two sets of sites (C4, O2, H2A and (C4′, O2′, H2B) with a site-occupancy factor of 0.6972:0.3028.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level. The disordered hy­droxy group (C4—O2—H2A and C2′—O2′—H2B) is also shown, together with the intra­molecular O—H⋯O hydrogen bond.

Supra­molecular features  

In the crystal, the mol­ecules are linked by hy­droxy O5—H⋯O1ii hydrogen bonds to carbonyl O-atom acceptors (Table 1), forming a primary large centrosymmetric Inline graphic(36) cyclic dimer (Fig. 2). These dimers are, in turn, linked through the disordered C4 hy­droxy group [O2—H⋯O5i and O2′—H′⋯O5i], extending the structure into a one-dimensional ribbon along [1Inline graphic1] (Fig. 3). No inter-ring π–π inter­actions are present in the structure (minimum ring-centroid separation = 5.66 Å).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O5i 0.83 2.18 3.004 (7) 174
O2′—H2B⋯O5i 0.82 1.86 2.565 (16) 143
O3—H3O⋯O4 0.86 1.64 2.440 (3) 153
O5—H5O⋯O1ii 0.83 1.86 2.687 (3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Centrosymmetric dimer formation in the crystal packing of the title compound, with inter­molecular hydrogen bonds shown as dashed lines.

Figure 3.

Figure 3

A view of the crystal packing in the unit cell, showing dimer extension into one-dimensional ribbons extending along [1Inline graphic1]. Blue- and orange-coloured dashed lines indicate the intra- and inter­molecular O—H⋯O hydrogen bonding. Only H atoms involved in hydrogen bonds are shown.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, updates November, 2015; Groom et al., 2016) has registered two hits for the compounds found in M. malabarica: malabaricone-A (Bauri et al., 2006a ) and malabaricone-C monohydrate (Bauri et al., 2006b ), but no other examples were found resembling the title compound.

Synthesis and crystallization  

The compound has been isolated as a very minor constituent from a methanol extraction of the fruit rind of M. malabarica by using CC/SiO2 with gradient solvent elution with a binary mixture of solvent methanol and chloro­form. Suitable crystals for X-ray data collection were obtained after recrystallization (×3) from hexa­ne:ethyl acetate (4:1), by slow evaporation at room temperature. The NMR spectroscopic analysis of the crystallized product has been inter­preted as follows. 1H NMR data (acetone-d 6, 200 MHz): 8.80 (s, brs-OH, 1H), 6.89 (dd, 1H, J = 8.2 Hz, H-2′′ & H-6′′, 2 × Ar-H), 6.59 (dd, 2H, J = 8.2 Hz, H-3′′ & H-5′′, 2 × Ar-H), 4.20–4.15 (m, 1H, H-6), 2.90 (dd, 2H, J = 7.0 Hz, H-2′), 2.61–2.43 (dd, 2H, J = 2.20 Hz each, H-4), 2.39 (dd, 2H, J = 7.0 Hz, H-9) 1.67–1.40 (m, 4H, H-3′ & H-8′), 1.19 (s, 8H, 4 × –CH2 H-4′ H-5′, H-6′ & H-7′). 13C NMR data (50 MHz,acetone-d 6): 205.69 (C-1′, >C=O), 198 (C-1, >C=O), 194 (C-3 & C-5, >C=C—OH), 156.20 (C-4′′, Ar—C—OH), 129.94 (C-2′′ & C-6′′, 2 × Ar—C—H), 116.6 (C-3′ & C-5′, Ar—C—H), 134.12 (C-6, >C=C<), 113.60 (C-2, >C=C<), 47.58 (C-2′, –CH2—CO–), 42.13 (C-9′, Ar—CH2), 40.57 (C-3′, –CH2—CH2), 35.56 (C-4′, –CH2—CH2–), 32.37 (C-6′, –CH2—CH2), 30.19 (C-3′, –CH2—CH2–), 25.40 (C-5′, –CH2).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were positioned with idealized geometry using a riding model with aromatic C—H = 0.93 Å (aromatic) or 0.97 Å (methyl­ene). The H atoms of the OH groups were located in a difference map and were refined as riding on their parent O atoms. All H atoms were refined with isotropic displacement parameters set at 1.2 U eq of the parent atom. The atoms C4 and O2 are disordered and were refined using a split model with site-occupancy factors 0.6972:0.3028. The corresponding bond distances in the disordered groups were restrained to be equal. The reflections 0 Inline graphic 14 and 0 0 7 had poor disagreement with their calculated values and were omitted from the refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C21H26O5
M r 358.42
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 5.6630 (8), 8.707 (1), 20.152 (3)
α, β, γ (°) 81.69 (1), 86.48 (1), 88.48 (1)
V3) 981.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.48 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.960, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 6013, 3552, 2638
R int 0.013
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.071, 0.178, 1.10
No. of reflections 3552
No. of parameters 254
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.20

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, 1R. DOI: 10.1107/S2056989016013797/zs2367sup1.cif

e-72-01408-sup1.cif (240.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013797/zs2367Isup2.hkl

e-72-01408-Isup2.hkl (194.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016013797/zs2367Isup3.cml

CCDC reference: 1501296

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, Material und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, and Professor Kingston, Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA, for their kind co-operation to record X-ray diffraction data of the crystal, to provide diffractometer time and to carry out an anti­proliferative bioassay against a cancer cell line.

supplementary crystallographic information

Crystal data

C21H26O5 Z = 2
Mr = 358.42 F(000) = 384
Triclinic, P1 Dx = 1.213 Mg m3
a = 5.6630 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.707 (1) Å Cell parameters from 2139 reflections
c = 20.152 (3) Å θ = 2.9–27.7°
α = 81.69 (1)° µ = 0.09 mm1
β = 86.48 (1)° T = 293 K
γ = 88.48 (1)° Prism, yellow
V = 981.2 (2) Å3 0.48 × 0.48 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2638 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray source Rint = 0.013
Rotation method data acquisition using ω scans θmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −6→6
Tmin = 0.960, Tmax = 0.983 k = −10→10
6013 measured reflections l = −21→24
3552 independent reflections

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071 H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.9321P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3552 reflections Δρmax = 0.36 e Å3
254 parameters Δρmin = −0.20 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.0508 (4) −0.0225 (3) 0.83338 (11) 0.0664 (7)
O2 0.1863 (14) −0.3525 (8) 1.0267 (3) 0.0655 (19) 0.6972
H2A 0.2365 −0.2936 1.0510 0.079* 0.6972
O2' 0.254 (4) −0.310 (2) 1.0277 (7) 0.069 (5) 0.3028
H2B 0.2933 −0.2259 1.0380 0.083* 0.3028
O3 0.6549 (4) −0.3272 (3) 0.82020 (11) 0.0658 (7)
H3O 0.6550 −0.2796 0.7798 0.079*
O4 0.5334 (4) −0.1694 (3) 0.71742 (10) 0.0673 (7)
O5 −0.5995 (4) 0.8647 (2) 0.10839 (10) 0.0617 (6)
H5O −0.7128 0.9054 0.1283 0.074*
C1 0.3066 (5) −0.1679 (3) 0.81894 (13) 0.0427 (6)
C2 0.1065 (5) −0.1099 (3) 0.85825 (14) 0.0481 (7)
C3 0.0917 (6) −0.1598 (4) 0.93293 (15) 0.0742 (11)
H3 0.0167 −0.0988 0.9625 0.089*
C4 0.2009 (10) −0.3083 (6) 0.9562 (2) 0.0636 (14) 0.6972
C4' 0.3050 (18) −0.2280 (11) 0.9622 (4) 0.046 (2) 0.3028
C5 0.4429 (6) −0.3327 (4) 0.92481 (15) 0.0605 (9)
H5A 0.5567 −0.2819 0.9480 0.073*
H5B 0.4808 −0.4430 0.9313 0.073*
C6 0.4698 (5) −0.2731 (3) 0.85166 (14) 0.0470 (7)
C7 0.3503 (5) −0.1185 (3) 0.74718 (14) 0.0467 (7)
C8 0.1815 (5) −0.0110 (3) 0.70682 (14) 0.0501 (7)
H8A 0.1566 0.0819 0.7279 0.060*
H8B 0.0303 −0.0616 0.7084 0.060*
C9 0.2634 (6) 0.0367 (4) 0.63382 (14) 0.0566 (8)
H9A 0.3025 −0.0553 0.6131 0.068*
H9B 0.4049 0.0981 0.6314 0.068*
C10 0.0701 (6) 0.1314 (4) 0.59556 (15) 0.0598 (8)
H10A −0.0672 0.0670 0.5959 0.072*
H10B 0.0231 0.2186 0.6187 0.072*
C11 0.1480 (6) 0.1921 (4) 0.52332 (15) 0.0627 (9)
H11A 0.2042 0.1053 0.5010 0.075*
H11B 0.2796 0.2612 0.5232 0.075*
C12 −0.0481 (6) 0.2792 (4) 0.48314 (15) 0.0614 (9)
H12A −0.1808 0.2108 0.4836 0.074*
H12B −0.1027 0.3672 0.5048 0.074*
C13 0.0332 (6) 0.3360 (4) 0.41130 (15) 0.0599 (8)
H13A 0.0865 0.2474 0.3899 0.072*
H13B 0.1679 0.4026 0.4113 0.072*
C14 −0.1574 (6) 0.4262 (3) 0.36914 (14) 0.0528 (7)
H14A −0.2963 0.3627 0.3705 0.063*
H14B −0.2036 0.5197 0.3880 0.063*
C15 −0.0638 (5) 0.4693 (4) 0.29700 (15) 0.0553 (8)
H15A −0.0314 0.3738 0.2783 0.066*
H15B 0.0863 0.5201 0.2975 0.066*
C16 −0.2175 (5) 0.5731 (3) 0.24928 (14) 0.0433 (6)
C17 −0.4281 (5) 0.6465 (3) 0.26883 (14) 0.0486 (7)
H17 −0.4819 0.6297 0.3138 0.058*
C18 −0.5602 (5) 0.7439 (3) 0.22330 (14) 0.0492 (7)
H18 −0.7001 0.7906 0.2376 0.059*
C19 −0.4795 (5) 0.7697 (3) 0.15660 (14) 0.0458 (7)
C20 −0.2681 (5) 0.6987 (3) 0.13615 (14) 0.0528 (8)
H20 −0.2128 0.7169 0.0913 0.063*
C21 −0.1409 (5) 0.6019 (3) 0.18188 (14) 0.0502 (7)
H21 −0.0015 0.5550 0.1673 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0639 (14) 0.0742 (15) 0.0563 (13) 0.0366 (12) −0.0044 (10) 0.0007 (11)
O2 0.082 (5) 0.068 (4) 0.043 (2) 0.013 (3) 0.005 (2) −0.001 (2)
O2' 0.107 (13) 0.067 (9) 0.032 (5) −0.021 (6) −0.013 (5) 0.004 (5)
O3 0.0579 (13) 0.0792 (15) 0.0541 (12) 0.0328 (12) 0.0045 (10) 0.0024 (11)
O4 0.0666 (15) 0.0829 (16) 0.0474 (12) 0.0210 (12) 0.0073 (10) −0.0015 (11)
O5 0.0625 (14) 0.0668 (14) 0.0496 (12) 0.0272 (11) −0.0018 (10) 0.0066 (10)
C1 0.0426 (15) 0.0434 (15) 0.0404 (14) 0.0073 (12) −0.0031 (11) −0.0018 (11)
C2 0.0477 (16) 0.0482 (16) 0.0463 (16) 0.0125 (13) −0.0043 (13) −0.0017 (13)
C3 0.073 (2) 0.099 (3) 0.0426 (17) 0.044 (2) 0.0076 (16) 0.0028 (17)
C4 0.078 (4) 0.070 (3) 0.036 (2) 0.032 (3) 0.010 (2) 0.006 (2)
C4' 0.068 (7) 0.040 (5) 0.030 (5) −0.002 (5) −0.007 (4) −0.005 (4)
C5 0.062 (2) 0.068 (2) 0.0464 (17) 0.0210 (16) −0.0074 (14) 0.0038 (15)
C6 0.0430 (16) 0.0492 (16) 0.0470 (16) 0.0106 (13) −0.0005 (12) −0.0041 (13)
C7 0.0523 (17) 0.0438 (15) 0.0437 (15) 0.0036 (13) −0.0044 (13) −0.0053 (12)
C8 0.0565 (18) 0.0486 (16) 0.0429 (15) 0.0030 (14) −0.0080 (13) 0.0019 (12)
C9 0.071 (2) 0.0545 (18) 0.0433 (16) 0.0027 (15) −0.0105 (14) 0.0005 (13)
C10 0.078 (2) 0.0532 (18) 0.0467 (17) 0.0009 (16) −0.0139 (15) 0.0031 (14)
C11 0.081 (2) 0.0580 (19) 0.0471 (17) 0.0033 (17) −0.0151 (16) 0.0034 (14)
C12 0.081 (2) 0.0522 (18) 0.0492 (17) 0.0053 (16) −0.0117 (16) 0.0014 (14)
C13 0.074 (2) 0.0544 (18) 0.0488 (17) 0.0063 (16) −0.0148 (15) 0.0037 (14)
C14 0.0605 (19) 0.0465 (16) 0.0492 (17) 0.0035 (14) −0.0075 (14) 0.0018 (13)
C15 0.0510 (18) 0.0560 (18) 0.0542 (18) 0.0050 (14) −0.0073 (14) 0.0082 (14)
C16 0.0428 (15) 0.0400 (14) 0.0455 (15) 0.0013 (12) −0.0052 (12) 0.0001 (12)
C17 0.0486 (17) 0.0539 (17) 0.0400 (15) 0.0034 (13) 0.0017 (12) 0.0012 (13)
C18 0.0437 (16) 0.0503 (17) 0.0518 (17) 0.0084 (13) 0.0025 (13) −0.0048 (13)
C19 0.0462 (16) 0.0431 (15) 0.0461 (15) 0.0081 (13) −0.0040 (12) −0.0003 (12)
C20 0.0544 (18) 0.0581 (18) 0.0424 (15) 0.0147 (15) 0.0031 (13) −0.0009 (13)
C21 0.0461 (17) 0.0520 (17) 0.0504 (16) 0.0140 (13) 0.0004 (13) −0.0039 (13)

Geometric parameters (Å, º)

O1—C2 1.238 (3) C10—C11 1.518 (4)
O2—C4 1.415 (7) C10—H10A 0.9700
O2—H2A 0.8256 C10—H10B 0.9700
O2'—H2B 0.8247 C11—C12 1.534 (4)
O3—C6 1.305 (3) C11—H11A 0.9700
O3—H3O 0.8588 C11—H11B 0.9700
O4—C7 1.268 (3) C12—C13 1.509 (4)
O5—C19 1.382 (3) C12—H12A 0.9700
O5—H5O 0.8342 C12—H12B 0.9700
C1—C6 1.408 (4) C13—C14 1.543 (4)
C1—C7 1.456 (4) C13—H13A 0.9700
C1—C2 1.463 (4) C13—H13B 0.9700
C2—C3 1.503 (4) C14—C15 1.514 (4)
C3—C4 1.446 (5) C14—H14A 0.9700
C3—C4' 1.452 (10) C14—H14B 0.9700
C3—H3 0.9300 C15—C16 1.519 (4)
C4—C5 1.497 (5) C15—H15A 0.9700
C4'—C5 1.449 (9) C15—H15B 0.9700
C5—C6 1.490 (4) C16—C21 1.390 (4)
C5—H5A 0.9700 C16—C17 1.400 (4)
C5—H5B 0.9700 C17—C18 1.395 (4)
C7—C8 1.510 (4) C17—H17 0.9300
C8—C9 1.517 (4) C18—C19 1.382 (4)
C8—H8A 0.9700 C18—H18 0.9300
C8—H8B 0.9700 C19—C20 1.400 (4)
C9—C10 1.531 (4) C20—C21 1.379 (4)
C9—H9A 0.9700 C20—H20 0.9300
C9—H9B 0.9700 C21—H21 0.9300
C4—O2—H2A 119.3 C10—C11—C12 113.8 (3)
C6—O3—H3O 105.4 C10—C11—H11A 108.8
C19—O5—H5O 107.1 C12—C11—H11A 108.8
C6—C1—C7 117.7 (2) C10—C11—H11B 108.8
C6—C1—C2 119.2 (2) C12—C11—H11B 108.8
C7—C1—C2 123.1 (2) H11A—C11—H11B 107.7
O1—C2—C1 123.6 (3) C13—C12—C11 112.6 (3)
O1—C2—C3 118.4 (3) C13—C12—H12A 109.1
C1—C2—C3 118.0 (2) C11—C12—H12A 109.1
C4—C3—C2 116.1 (3) C13—C12—H12B 109.1
C4'—C3—C2 116.5 (4) C11—C12—H12B 109.1
C4—C3—H3 122.0 H12A—C12—H12B 107.8
C2—C3—H3 122.0 C12—C13—C14 114.5 (3)
O2—C4—C3 115.1 (5) C12—C13—H13A 108.6
O2—C4—C5 113.0 (5) C14—C13—H13A 108.6
C3—C4—C5 114.4 (4) C12—C13—H13B 108.6
C5—C4'—C3 117.1 (6) C14—C13—H13B 108.6
C4'—C5—C6 112.4 (4) H13A—C13—H13B 107.6
C6—C5—C4 114.3 (3) C15—C14—C13 110.4 (3)
C6—C5—H5A 108.7 C15—C14—H14A 109.6
C4—C5—H5A 108.7 C13—C14—H14A 109.6
C6—C5—H5B 108.7 C15—C14—H14B 109.6
C4—C5—H5B 108.7 C13—C14—H14B 109.6
H5A—C5—H5B 107.6 H14A—C14—H14B 108.1
O3—C6—C1 122.7 (3) C14—C15—C16 118.1 (3)
O3—C6—C5 114.7 (2) C14—C15—H15A 107.8
C1—C6—C5 122.6 (2) C16—C15—H15A 107.8
O4—C7—C1 119.1 (2) C14—C15—H15B 107.8
O4—C7—C8 119.0 (2) C16—C15—H15B 107.8
C1—C7—C8 122.0 (2) H15A—C15—H15B 107.1
C7—C8—C9 114.7 (3) C21—C16—C17 117.4 (2)
C7—C8—H8A 108.6 C21—C16—C15 118.1 (3)
C9—C8—H8A 108.6 C17—C16—C15 124.5 (3)
C7—C8—H8B 108.6 C18—C17—C16 122.4 (3)
C9—C8—H8B 108.6 C18—C17—H17 118.8
H8A—C8—H8B 107.6 C16—C17—H17 118.8
C8—C9—C10 110.7 (3) C19—C18—C17 118.8 (3)
C8—C9—H9A 109.5 C19—C18—H18 120.6
C10—C9—H9A 109.5 C17—C18—H18 120.6
C8—C9—H9B 109.5 O5—C19—C18 122.4 (2)
C10—C9—H9B 109.5 O5—C19—C20 117.9 (2)
H9A—C9—H9B 108.1 C18—C19—C20 119.7 (2)
C11—C10—C9 113.2 (3) C21—C20—C19 120.6 (3)
C11—C10—H10A 108.9 C21—C20—H20 119.7
C9—C10—H10A 108.9 C19—C20—H20 119.7
C11—C10—H10B 108.9 C20—C21—C16 121.2 (3)
C9—C10—H10B 108.9 C20—C21—H21 119.4
H10A—C10—H10B 107.8 C16—C21—H21 119.4
C6—C1—C2—O1 −176.9 (3) C6—C1—C7—C8 177.6 (3)
C7—C1—C2—O1 5.0 (5) C2—C1—C7—C8 −4.3 (4)
C6—C1—C2—C3 3.0 (4) O4—C7—C8—C9 −5.2 (4)
C7—C1—C2—C3 −175.1 (3) C1—C7—C8—C9 176.1 (3)
O1—C2—C3—C4 152.2 (4) C7—C8—C9—C10 174.2 (3)
C1—C2—C3—C4 −27.6 (5) C8—C9—C10—C11 176.0 (3)
O1—C2—C3—C4' −164.8 (5) C9—C10—C11—C12 176.6 (3)
C1—C2—C3—C4' 15.4 (7) C10—C11—C12—C13 −179.1 (3)
C2—C3—C4—O2 179.6 (5) C11—C12—C13—C14 −179.2 (3)
C2—C3—C4—C5 46.1 (6) C12—C13—C14—C15 −176.4 (3)
C2—C3—C4'—C5 −40.0 (10) C13—C14—C15—C16 −173.8 (3)
C3—C4'—C5—C6 43.6 (9) C14—C15—C16—C21 −174.6 (3)
O2—C4—C5—C6 −174.4 (5) C14—C15—C16—C17 7.6 (5)
C3—C4—C5—C6 −39.9 (6) C21—C16—C17—C18 0.6 (4)
C7—C1—C6—O3 −0.4 (4) C15—C16—C17—C18 178.4 (3)
C2—C1—C6—O3 −178.6 (3) C16—C17—C18—C19 −0.4 (5)
C7—C1—C6—C5 −179.6 (3) C17—C18—C19—O5 −179.9 (3)
C2—C1—C6—C5 2.2 (5) C17—C18—C19—C20 −0.2 (4)
C4'—C5—C6—O3 155.7 (5) O5—C19—C20—C21 −179.6 (3)
C4—C5—C6—O3 −163.2 (4) C18—C19—C20—C21 0.7 (5)
C4'—C5—C6—C1 −25.0 (6) C19—C20—C21—C16 −0.5 (5)
C4—C5—C6—C1 16.1 (5) C17—C16—C21—C20 −0.1 (4)
C6—C1—C7—O4 −1.1 (4) C15—C16—C21—C20 −178.1 (3)
C2—C1—C7—O4 177.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O5i 0.83 2.18 3.004 (7) 174
O2′—H2B···O5i 0.82 1.86 2.565 (16) 143
O3—H3O···O4 0.86 1.64 2.440 (3) 153
O5—H5O···O1ii 0.83 1.86 2.687 (3) 172

Symmetry codes: (i) x+1, y−1, z+1; (ii) −x−1, −y+1, −z+1.

References

  1. Banerjee, D., Bauri, A. K., Guha, R. K., Bandyopadhyay, S. K. & Chattopadhyay, S. (2008). Eur. J. Pharmacol. 578, 300–312. [DOI] [PubMed]
  2. Banerjee, D., Maity, B., Bauri, A. K., Bandyopadhyay, S. K. & Chattopadhyay, S. (2007). J. Pharma. Pharmacol. 59, 1555–1565. [DOI] [PubMed]
  3. Bauri, A. K., Foro, S. & Nhu Do, Q. N. (2016). IUCrData, 1, x160577.
  4. Bauri, A. K., Foro, S., Lindner, H. J. & Nayak, S. K. (2006a). Acta Cryst. E62, o1338–o1339.
  5. Bauri, A. K., Nayak, S. K., Foro, S. & Lindner, H.-J. (2006b). Acta Cryst. E62, o2202–o2203.
  6. Chong, Y. M., Yin, W. F., Ho, C. Y., Mustafa, M. S., Hadi, A. H. A., Awang, K., Narrima, P., Koh, C.-L., Appleton, D. R. & Chan, K.-G. (2011). J. Nat. Prod. 74, 2261–2264. [DOI] [PubMed]
  7. Forrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440–449. [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Maity, B., Yadav, S. K., Patro, B. S., Tyagi, M., Bandyopadhyay, S. K. & Chattopadhyay, S. (2012). Free Radic. Biol. Med. 52, 1680–1691. [DOI] [PubMed]
  10. Manna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2015). Phytomedicine, 22, 713–723. [DOI] [PubMed]
  11. Manna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2016). Int. Immunopharmacol. 39, 34–40. [DOI] [PubMed]
  12. Manna, A., Saha, P., Sarkar, A., Mukhopadhyay, D., Bauri, A. K., Kumar, D., Das, P., Chattopadhyay, S. & Chatterjee, M. (2012). PLoS One, 45, 518–526. [DOI] [PMC free article] [PubMed]
  13. Morita, T., Jinno, K., Kawagishi, H., Arimoto, Y., Suganuma, H., Inakuma, T. & Sugiyama, K. (2003). J. Agric. Food Chem. 51, 1560–1565. [DOI] [PubMed]
  14. Olajide, O. A., Ajayi, F. F., Ekhelar, A. L., Awe, O. S., Makinde, J. M. & Alada, A. R. (1999). Phytother. Res. 13, 344–345. [DOI] [PubMed]
  15. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  16. Patro, B. S., Bauri, A. K., Mishra, S. & Chattopadhyay, S. (2005). J. Agric. Food Chem. 53, 6912–6918. [DOI] [PubMed]
  17. Patro, B. S., Tyagi, M., Saha, J. & Chattopadhyay, S. (2010). Bioorg. Med. Chem. 18, 7043–7051. [DOI] [PubMed]
  18. Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1974). Indian J. Chem. Sect. B, 23, 46–48.
  19. Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 587–588. [PubMed]
  20. Sen, R., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2007). Phytother. Res. 21, 592–595. [DOI] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Talukdar, A. C., Jain, N., De, S. & Krishnamurty, H. G. (2000). Phytochemistry, 53, 155–157. [DOI] [PubMed]
  25. Tyagi, M., Bhattacharyya, R., Bauri, A. K., Patro, B. S. & Chattopadhyay, S. (2014). Biochim. Biophys. Acta, 1840, 1014–1027. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 1R. DOI: 10.1107/S2056989016013797/zs2367sup1.cif

e-72-01408-sup1.cif (240.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016013797/zs2367Isup2.hkl

e-72-01408-Isup2.hkl (194.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016013797/zs2367Isup3.cml

CCDC reference: 1501296

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES