Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Sep 23;72(Pt 10):1456–1459. doi: 10.1107/S2056989016014298

Hydrogen bonding, π–π stacking and van der Waals forces-dominated layered regions in the crystal structure of 4-amino­pyridinium hydrogen (9-phosphono­non­yl)phospho­nate

Martin van Megen a, Guido J Reiss a,*, Walter Frank a
PMCID: PMC5050775  PMID: 27746940

The structure of the title mol­ecular salt, [C5H7N2][(HO)2OP(CH2)9PO2(OH)], shows a three-dimensional network with hydrogen bonding, π–π stacking, and van der Waals forces-dominated layered regions.

Keywords: crystal structure, 4-amino­pyridinium, bis­(phospho­nate), hydrogen bonding

Abstract

The asymmetric unit of the title mol­ecular salt, [C5H7N2 +][(HO)2OP(CH2)9PO2(OH)], consists of one 4-amino­pyridinium cation and one hydrogen (9-phos­phono­non­yl)phospho­nate anion, both in general positions. As expected, the 4-amino­pyridinium moieties are protonated exclusively at their endocyclic nitro­gen atom due to a mesomeric stabilization by the imine form which would not be given in the corresponding double-protonated dicationic species. In the crystal, the phosphonyl (–PO3H2) and hydrogen phospho­nate (–PO3H) groups of the anions form two-dimensional O—H⋯O hydrogen-bonded networks in the ab plane built from 24-membered hydrogen-bonded ring motifs with the graph-set descriptor R 6 6(24). These networks are pairwise linked by the anions’ alkyl­ene chains. The 4-amino­pyridinium cations are stacked in parallel displaced face-to-face arrangements and connect neighboring anionic substructures via medium–strong charge-supported N—H⋯O hydrogen bonds along the c axis. The resulting three-dimensional hydrogen-bonded network shows clearly separated hydro­philic and hydro­phobic structural domains.

Chemical context  

Salts of organo­phospho­nic acids with organic cations, e.g. with protonated primary (Mahmoudkhani & Langer, 2002b ), secondary (Wheatley et al., 2001) and tertiary amines (Kan & Ma, 2011) are of growing inter­est in supra­molecular chemistry and crystal engineering. Besides their inter­esting topologies and structural diversity, they seem to be feasible model compounds for metal phospho­nates as they exhibit similar structural characteristics but are less difficult to crystallize. Mostly, these organic solids establish extended hydrogen-bonded networks which are characterized by a rich diversity of strong charge-supported hydrogen bonds (Aakeröy & Seddon, 1993) and can either be one-, two- or three-dimensional. This contribution forms part of our research on the principles of the arrangement of alkane-α,ω-di­phospho­nic acids (van Megen et al., 2015) and their organic aminium salts (van Megen et al., 2016). Moreover, amino­pyridines and the related protonated cations are of crucial inter­est in the field of biochemistry (Muñoz-Caro & Niño, 2002; Bolliger et al., 2011) and are also used as counter-cations to stabilize complex salts (Reiss & Leske, 2014a ,b ), in crystal engineering (Sertucha et al., 1998; Surbella III et al., 2016) as well as in polymer chemistry (Deng et al., 2015).graphic file with name e-72-01456-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound, [C5H7N2 +][(HO)2OP(CH2)9PO2(OH)], consists of one 4-amino­pyridinium cation and one hydrogen (9-phosphono­non­yl)phospho­nate anion, both in general positions (Fig. 1). Generally, the first protonation of the 4-amino­pyridine can take place at the exo- as well as at the endocyclic nitro­gen atom. In the literature, all monoprotonated 4-amino­pyridines characterized to date are protonated at the endocyclic nitro­gen atom. Geometric parameters derived from the single-crystal diffraction experiment for the title compound show a short exocyclic N—C bond length [1.324 (2) Å] and slightly longer C—C and C—N bond lengths of the six-membered ring [1.350 (3)–1.425 (2) Å]. The bonding properties of this cation are best described by a pair of mesomeric structures: the enamine and the imine form (Scheme 2), which have been discussed in detail before (Koleva et al., 2008).graphic file with name e-72-01456-scheme2.jpg

Figure 1.

Figure 1

The asymmetric unit of the title compound plus symmetry-related hydrogen-bonded atoms [displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are drawn as spheres with arbitrary radii; symmetry codes: (i) 1 + x, −1 + y, 1 + z; (ii) x, −1 + y, 1 + z; (iii) 1 − x, 2 − y, 1 − z; (iv) 1 − x, 1 − y, 1 − z; (v) −x, 1 − y, 1 − z; (vi) −1 + x, 1 + y, −1 + z, (vii) x, 1 + y, −1 + z].

For the designation of the title compound, the systematic name of the amino form is used throughout this article. The bond lengths and angles of the anion are unexceptional and lie within the expected ranges. The alkyl­ene chain of the anion shows nearly anti­periplanar conformations. In detail, the P—OH distances of the phospho­nate moieties have values between 1.5535 (13) and 1.5786 (14) Å, longer than the P=O distances [1.5045 (13)–1.5149 (12) Å].

Supra­molecular features  

Within the crystal of the title compound, the phosphonyl and hydrogen phospho­nate groups of the anions form two-dimensional O—H⋯O hydrogen-bonded networks which propagate in the ab plane. These networks contain 24-membered rings classified as a third level graph set Inline graphic(24) (Etter et al., 1990; Fig. 2; Table 1). 24-Membered hydrogen-bonded rings have been well known for decades (e.g. Mootz & Poll, 1984). In particular, the Inline graphic(24) motif is very common (e.g. Gomathi & Mu­thiah, 2011; Maspoch et al., 2007). Along the c-axis direction, these networks are pairwise linked by the anions’ alkyl­ene chains to form a three-dimensional anionic substructure. The 4-amino­pyridinium cations show π–π stacking inter­actions. The rings are oriented in parallel displaced face-to-face arrangements (Grimme, 2008; Fig. 3). The geometry of these π–π inter­actions is reflected by distances of 3.25 and 3.32 Å between neighbouring pyridinium rings and centroid offsets of 2.37 and 2.42 Å. These findings are comparable to those found for other compounds containing pyridyl moieties (Janiak, 2000). Anions and cations are connected by medium–strong, charge-supported N—H⋯O hydrogen bonds (Steiner, 2002; Table 2) along the c axis. For these connections, each nitro­gen-bound hydrogen atom forms one unbifurcated hydrogen bond (Fig. 1). The resulting three-dimensional hydrogen-bonded network clearly shows separated hydro­philic and hydro­phobic regions (Fig. 3).

Figure 2.

Figure 2

Two-dimensional hydrogen-bonded networks composed of phosphonyl and hydrogen phospho­nate groups. The graph set Inline graphic(24) is indicated by blue bonds.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.78 (3) 1.85 (3) 2.6171 (18) 166 (3)
O5—H5⋯O1ii 0.88 (3) 1.64 (3) 2.5059 (18) 168 (3)
O4—H4⋯O2iii 0.91 (3) 1.59 (3) 2.4977 (17) 178 (3)
N1—H1⋯O6 0.96 (2) 1.74 (3) 2.696 (2) 173 (2)
N2—H22⋯O2iv 0.90 (3) 1.92 (3) 2.806 (2) 170 (2)
N2—H21⋯O1v 0.88 (3) 2.14 (3) 2.965 (2) 156 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

View along [010] of the title structure, showing the hydrogen bonding (red), π–π stacking (blue), and van der Waals forces (grey) dominated layered regions within the three-dimensional network.

Table 2. Experimental details.

Crystal data
Chemical formula C5H7N2 +·C9H21O6P2
M r 382.32
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 123
a, b, c (Å) 6.7275 (4), 6.8963 (4), 20.0643 (10)
α, β, γ (°) 97.956 (4), 98.767 (4), 94.309 (5)
V3) 906.73 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.33 × 0.07 × 0.03
 
Data collection
Diffractometer Stoe IPDS
No. of measured, independent and observed [I > 2σ(I)] reflections 8855, 4131, 3674
R int 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.079, 1.02
No. of reflections 4131
No. of parameters 241
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.36

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXT (Sheldrick, 2015a ), SHELXL-2014/7 (Sheldrick, 2015b ) and DIAMOND (Brandenburg, 2015).

Related structures  

For related phospho­nate and bis­(phospho­nate) salts, see: Ferguson et al. (1998); Fu et al. (2004); Fuller & Heimer (1995); Glidewell et al. (2000); Kan & Ma (2011); Mahmoudkhani & Langer (2002a ,b ,c ); van Megen et al. (2016); Plabst et al. (2009); Wheatley et al. (2001). For related 4-amino­pyridinium salts, see: Sertucha et al. (1998); Reiss & Leske (2014a ,b ); Surbella III et al. (2016).

Synthesis and crystallization  

Equimolar qu­anti­ties (0.5 mmol) of 4-amino­pyridine (47.1 mg) and nonane-1,9-di­phospho­nic acid (144.1 mg) were dissolved in methanol, separately. The solutions were mixed and stored in an open petri dish. Within several days, colorless platelet-shaped crystals of the title compound were obtained by slow evaporation of the solvent. 4-Amino­pyridine was purchased from commercial sources and nonane-1,9-di­phospho­nic acid was synthesized according to the literature (Schwarzenbach & Zurc, 1950; Moedritzer & Irani, 1961; Griffith et al., 1998). Elemental analysis: C14H28N2O6P2 (382.3): calculated C 44.0, H 7.4, N 7.3; found C 43.6, H 7.9, N 7.1. M. p.: 157 °C. The IR and Raman spectra of the title compound are shown in Fig. 4.

Figure 4.

Figure 4

The IR (blue) and Raman (red) spectra of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms bound to either nitro­gen or oxygen atoms were identified in difference syntheses and refined without any geometric constraints or restraints with individual U iso(H) values. Carbon-bound hydrogen atoms were included using a riding model (AFIX23 option of the SHELX program for the methyl­ene groups and AFIX43 option for the methine groups).

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2056989016014298/hb7610sup1.cif

e-72-01456-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014298/hb7610Isup2.hkl

e-72-01456-Isup2.hkl (329.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016014298/hb7610Isup3.cml

CCDC reference: 1503436

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank E. Hammes and P. Roloff for technical support.

supplementary crystallographic information

Crystal data

C5H7N2+·C9H21O6P2 Z = 2
Mr = 382.32 F(000) = 408
Triclinic, P1 Dx = 1.400 Mg m3
a = 6.7275 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 6.8963 (4) Å Cell parameters from 6853 reflections
c = 20.0643 (10) Å θ = 3.0–35.3°
α = 97.956 (4)° µ = 0.27 mm1
β = 98.767 (4)° T = 123 K
γ = 94.309 (5)° Platelet, colourless
V = 906.73 (9) Å3 0.33 × 0.07 × 0.03 mm

Data collection

Stoe IPDS diffractometer Rint = 0.029
Radiation source: sealed tube θmax = 27.5°, θmin = 3.0°
ω scans h = −8→8
8855 measured reflections k = −8→8
4131 independent reflections l = −26→26
3674 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.011P)2 + 1.110P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4131 reflections Δρmax = 0.50 e Å3
241 parameters Δρmin = −0.36 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.29655 (6) 1.15924 (6) 0.22320 (2) 0.01579 (10)
O1 0.14667 (19) 1.0094 (2) 0.17549 (6) 0.0230 (3)
N1 0.5995 (3) 0.2836 (2) 0.92948 (8) 0.0257 (3)
H1 0.553 (4) 0.306 (4) 0.8838 (13) 0.036 (6)*
C1 0.2470 (3) 1.1616 (3) 0.30883 (8) 0.0179 (3)
H1A 0.3161 1.2802 0.3371 0.021*
H1B 0.1032 1.1663 0.3086 0.021*
P2 0.24757 (6) 0.29013 (6) 0.77082 (2) 0.01589 (10)
O2 0.51802 (18) 1.13618 (18) 0.22159 (6) 0.0199 (3)
N2 0.7740 (3) 0.1858 (3) 1.12583 (8) 0.0252 (3)
H21 0.901 (4) 0.169 (4) 1.1403 (14) 0.049 (8)*
H22 0.681 (4) 0.172 (4) 1.1527 (12) 0.035 (6)*
C2 0.3143 (3) 0.9827 (3) 0.34082 (8) 0.0191 (3)
H2A 0.2686 0.8640 0.3084 0.023*
H2B 0.4608 0.9929 0.3504 0.023*
O3 0.2486 (2) 1.3660 (2) 0.20293 (7) 0.0239 (3)
C3 0.2306 (3) 0.9668 (3) 0.40681 (8) 0.0191 (3)
H3A 0.2699 1.0891 0.4379 0.023*
H3B 0.0842 0.9503 0.3964 0.023*
H3 0.343 (5) 1.442 (5) 0.2068 (17) 0.070 (11)*
O4 0.24107 (19) 0.08343 (18) 0.72796 (6) 0.0188 (2)
C4 0.3028 (3) 0.7975 (3) 0.44244 (8) 0.0195 (3)
H4A 0.4490 0.8157 0.4542 0.023*
H4B 0.2664 0.6752 0.4112 0.023*
H4 0.330 (5) 0.006 (5) 0.7471 (16) 0.066 (9)*
O5 0.1083 (2) 0.27587 (19) 0.82576 (6) 0.0216 (3)
C5 0.2125 (3) 0.7822 (3) 0.50710 (9) 0.0195 (3)
H5A 0.2483 0.9055 0.5379 0.023*
H5B 0.0664 0.7648 0.4950 0.023*
H5 0.017 (5) 0.174 (5) 0.8191 (16) 0.064 (9)*
O6 0.45679 (19) 0.37295 (19) 0.80557 (6) 0.0220 (3)
C6 0.2806 (3) 0.6151 (3) 0.54491 (8) 0.0188 (3)
H6A 0.4264 0.6325 0.5579 0.023*
H6B 0.2450 0.4910 0.5146 0.023*
C7 0.1838 (3) 0.6074 (3) 0.60867 (8) 0.0179 (3)
H7A 0.0383 0.5858 0.5951 0.022*
H7B 0.2146 0.7341 0.6377 0.022*
C8 0.2526 (3) 0.4476 (3) 0.65035 (8) 0.0180 (3)
H8A 0.3972 0.4716 0.6661 0.022*
H8B 0.2261 0.3205 0.6214 0.022*
C9 0.1432 (3) 0.4431 (3) 0.71211 (8) 0.0175 (3)
H9A 0.0022 0.3966 0.6959 0.021*
H9B 0.1488 0.5762 0.7360 0.021*
C10 0.7973 (3) 0.2769 (3) 0.95325 (10) 0.0283 (4)
H10 0.8919 0.2928 0.9247 0.034*
C11 0.8604 (3) 0.2470 (3) 1.01867 (9) 0.0272 (4)
H11 0.9972 0.2420 1.0341 0.033*
C12 0.7189 (3) 0.2236 (3) 1.06310 (9) 0.0199 (3)
C13 0.5127 (3) 0.2384 (3) 1.03659 (9) 0.0214 (4)
H13 0.4144 0.2288 1.0642 0.026*
C14 0.4601 (3) 0.2665 (3) 0.97075 (10) 0.0242 (4)
H14 0.3249 0.2741 0.9537 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01293 (19) 0.0198 (2) 0.0158 (2) 0.00022 (16) 0.00233 (15) 0.00733 (16)
O1 0.0224 (6) 0.0286 (7) 0.0167 (6) −0.0056 (5) 0.0023 (5) 0.0042 (5)
N1 0.0360 (9) 0.0236 (8) 0.0159 (7) 0.0009 (7) −0.0008 (6) 0.0036 (6)
C1 0.0179 (8) 0.0202 (8) 0.0161 (8) −0.0003 (6) 0.0038 (6) 0.0048 (6)
P2 0.0175 (2) 0.0167 (2) 0.01360 (19) −0.00040 (16) 0.00111 (15) 0.00535 (15)
O2 0.0163 (6) 0.0239 (6) 0.0228 (6) 0.0042 (5) 0.0057 (5) 0.0111 (5)
N2 0.0187 (8) 0.0392 (10) 0.0194 (7) 0.0036 (7) 0.0035 (6) 0.0097 (7)
C2 0.0185 (8) 0.0237 (9) 0.0162 (8) 0.0015 (7) 0.0030 (6) 0.0072 (6)
O3 0.0158 (6) 0.0267 (7) 0.0328 (7) 0.0026 (5) 0.0047 (5) 0.0162 (6)
C3 0.0195 (8) 0.0229 (9) 0.0163 (8) 0.0003 (7) 0.0047 (6) 0.0066 (6)
O4 0.0190 (6) 0.0194 (6) 0.0178 (6) 0.0029 (5) 0.0014 (5) 0.0036 (5)
C4 0.0201 (8) 0.0239 (9) 0.0161 (8) 0.0009 (7) 0.0038 (6) 0.0079 (6)
O5 0.0280 (7) 0.0206 (6) 0.0170 (6) −0.0021 (5) 0.0070 (5) 0.0041 (5)
C5 0.0209 (8) 0.0217 (8) 0.0169 (8) 0.0002 (7) 0.0039 (6) 0.0063 (6)
O6 0.0216 (6) 0.0228 (6) 0.0202 (6) −0.0045 (5) −0.0032 (5) 0.0091 (5)
C6 0.0193 (8) 0.0221 (8) 0.0161 (8) 0.0008 (7) 0.0041 (6) 0.0056 (6)
C7 0.0195 (8) 0.0199 (8) 0.0153 (7) 0.0014 (6) 0.0029 (6) 0.0060 (6)
C8 0.0191 (8) 0.0200 (8) 0.0157 (7) 0.0019 (6) 0.0027 (6) 0.0058 (6)
C9 0.0178 (8) 0.0198 (8) 0.0157 (7) 0.0020 (6) 0.0027 (6) 0.0054 (6)
C10 0.0305 (10) 0.0338 (11) 0.0206 (9) 0.0008 (8) 0.0077 (7) 0.0020 (8)
C11 0.0206 (9) 0.0390 (11) 0.0215 (9) 0.0018 (8) 0.0038 (7) 0.0032 (8)
C12 0.0212 (8) 0.0192 (8) 0.0184 (8) 0.0008 (7) 0.0025 (6) 0.0014 (6)
C13 0.0206 (8) 0.0207 (8) 0.0232 (9) 0.0010 (7) 0.0039 (7) 0.0047 (7)
C14 0.0249 (9) 0.0206 (9) 0.0254 (9) 0.0022 (7) −0.0020 (7) 0.0046 (7)

Geometric parameters (Å, º)

P1—O1 1.5088 (13) C4—H4A 0.9700
P1—O2 1.5149 (12) C4—H4B 0.9700
P1—O3 1.5786 (14) O5—H5 0.88 (3)
P1—C1 1.7974 (17) C5—C6 1.526 (2)
N1—C10 1.350 (3) C5—H5A 0.9700
N1—C14 1.352 (3) C5—H5B 0.9700
N1—H1 0.96 (2) C6—C7 1.527 (2)
C1—C2 1.534 (2) C6—H6A 0.9700
C1—H1A 0.9700 C6—H6B 0.9700
C1—H1B 0.9700 C7—C8 1.530 (2)
P2—O6 1.5045 (13) C7—H7A 0.9700
P2—O4 1.5535 (13) C7—H7B 0.9700
P2—O5 1.5601 (13) C8—C9 1.537 (2)
P2—C9 1.7880 (17) C8—H8A 0.9700
N2—C12 1.324 (2) C8—H8B 0.9700
N2—H21 0.88 (3) C9—H9A 0.9700
N2—H22 0.90 (3) C9—H9B 0.9700
C2—C3 1.530 (2) C10—C11 1.365 (3)
C2—H2A 0.9700 C10—H10 0.9300
C2—H2B 0.9700 C11—C12 1.415 (3)
O3—H3 0.78 (3) C11—H11 0.9300
C3—C4 1.523 (2) C12—C13 1.425 (2)
C3—H3A 0.9700 C13—C14 1.359 (3)
C3—H3B 0.9700 C13—H13 0.9300
O4—H4 0.91 (3) C14—H14 0.9300
C4—C5 1.527 (2)
O1—P1—O2 116.41 (8) C6—C5—C4 114.77 (15)
O1—P1—O3 105.96 (8) C6—C5—H5A 108.6
O2—P1—O3 108.76 (7) C4—C5—H5A 108.6
O1—P1—C1 109.09 (8) C6—C5—H5B 108.6
O2—P1—C1 109.62 (7) C4—C5—H5B 108.6
O3—P1—C1 106.51 (8) H5A—C5—H5B 107.6
C10—N1—C14 120.49 (16) C5—C6—C7 112.06 (14)
C10—N1—H1 121.8 (15) C5—C6—H6A 109.2
C14—N1—H1 117.6 (15) C7—C6—H6A 109.2
C2—C1—P1 113.66 (12) C5—C6—H6B 109.2
C2—C1—H1A 108.8 C7—C6—H6B 109.2
P1—C1—H1A 108.8 H6A—C6—H6B 107.9
C2—C1—H1B 108.8 C6—C7—C8 114.51 (14)
P1—C1—H1B 108.8 C6—C7—H7A 108.6
H1A—C1—H1B 107.7 C8—C7—H7A 108.6
O6—P2—O4 113.40 (7) C6—C7—H7B 108.6
O6—P2—O5 109.15 (7) C8—C7—H7B 108.6
O4—P2—O5 108.70 (7) H7A—C7—H7B 107.6
O6—P2—C9 111.12 (8) C7—C8—C9 111.67 (14)
O4—P2—C9 105.43 (8) C7—C8—H8A 109.3
O5—P2—C9 108.89 (8) C9—C8—H8A 109.3
C12—N2—H21 119.9 (18) C7—C8—H8B 109.3
C12—N2—H22 119.6 (16) C9—C8—H8B 109.3
H21—N2—H22 120 (2) H8A—C8—H8B 107.9
C3—C2—C1 112.06 (14) C8—C9—P2 113.70 (12)
C3—C2—H2A 109.2 C8—C9—H9A 108.8
C1—C2—H2A 109.2 P2—C9—H9A 108.8
C3—C2—H2B 109.2 C8—C9—H9B 108.8
C1—C2—H2B 109.2 P2—C9—H9B 108.8
H2A—C2—H2B 107.9 H9A—C9—H9B 107.7
P1—O3—H3 115 (2) N1—C10—C11 120.95 (18)
C4—C3—C2 113.89 (15) N1—C10—H10 119.5
C4—C3—H3A 108.8 C11—C10—H10 119.5
C2—C3—H3A 108.8 C10—C11—C12 120.38 (18)
C4—C3—H3B 108.8 C10—C11—H11 119.8
C2—C3—H3B 108.8 C12—C11—H11 119.8
H3A—C3—H3B 107.7 N2—C12—C11 121.92 (17)
P2—O4—H4 113 (2) N2—C12—C13 121.32 (17)
C3—C4—C5 112.68 (15) C11—C12—C13 116.75 (16)
C3—C4—H4A 109.1 C14—C13—C12 119.77 (17)
C5—C4—H4A 109.1 C14—C13—H13 120.1
C3—C4—H4B 109.1 C12—C13—H13 120.1
C5—C4—H4B 109.1 N1—C14—C13 121.60 (18)
H4A—C4—H4B 107.8 N1—C14—H14 119.2
P2—O5—H5 117 (2) C13—C14—H14 119.2
O1—P1—C1—C2 74.30 (14) O6—P2—C9—C8 66.99 (14)
O2—P1—C1—C2 −54.24 (14) O4—P2—C9—C8 −56.25 (14)
O3—P1—C1—C2 −171.74 (12) O5—P2—C9—C8 −172.75 (12)
P1—C1—C2—C3 −167.86 (12) C14—N1—C10—C11 1.9 (3)
C1—C2—C3—C4 −176.88 (14) N1—C10—C11—C12 −0.4 (3)
C2—C3—C4—C5 −178.52 (15) C10—C11—C12—N2 176.98 (19)
C3—C4—C5—C6 −179.83 (15) C10—C11—C12—C13 −1.7 (3)
C4—C5—C6—C7 −179.62 (14) N2—C12—C13—C14 −176.38 (18)
C5—C6—C7—C8 −177.72 (15) C11—C12—C13—C14 2.3 (3)
C6—C7—C8—C9 −177.78 (14) C10—N1—C14—C13 −1.3 (3)
C7—C8—C9—P2 −169.70 (12) C12—C13—C14—N1 −0.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O6i 0.78 (3) 1.85 (3) 2.6171 (18) 166 (3)
O5—H5···O1ii 0.88 (3) 1.64 (3) 2.5059 (18) 168 (3)
O4—H4···O2iii 0.91 (3) 1.59 (3) 2.4977 (17) 178 (3)
N1—H1···O6 0.96 (2) 1.74 (3) 2.696 (2) 173 (2)
N2—H22···O2iv 0.90 (3) 1.92 (3) 2.806 (2) 170 (2)
N2—H21···O1v 0.88 (3) 2.14 (3) 2.965 (2) 156 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z+1; (v) x+1, y−1, z+1.

References

  1. Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.
  2. Bolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945–954.
  3. Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Deng, Y., Helms, B. A. & Rolandi, M. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 211–214.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138.
  7. Fu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855–861.
  8. Fuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129–136.
  9. Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858. [DOI] [PubMed]
  10. Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762. [DOI] [PMC free article] [PubMed]
  11. Griffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317–4323.
  12. Grimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430–3434. [DOI] [PubMed]
  13. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  14. Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73–74.
  15. Koleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Frigge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta part A, 71, 695–702. [DOI] [PubMed]
  16. Mahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21–25.
  17. Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97–108.
  18. Mahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus, Sulfur Silicon Relat. Elem. 177, 2941–2951.
  19. Maspoch, D., Domingo, N., Roques, N., Wurst, K., Tejada, J., Rovira, C., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Eur. J. 13, 8153–8163. [DOI] [PubMed]
  20. Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485–494.
  21. Megen, M. van, Frank, W. & Reiss, G. J. (2016). CrystEngComm, 18, 3574–3584.
  22. Moedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297–304.
  23. Mootz, D. & Poll, W. (1984). Z. Naturforsch. Teil B, 39, 290–297.
  24. Muñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1–14. [DOI] [PubMed]
  25. Plabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049–5060.
  26. Reiss, G. J. & Leske, P. B. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 239–240.
  27. Reiss, G. J. & Leske, P. B. (2014b). Z. Kristallogr. New Cryst. Struct. 229, 452–454.
  28. Schwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202–212.
  29. Sertucha, J., Luque, A., Lloret, F. & Román, P. (1998). Polyhedron, 17, 3875–3880.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  33. Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.
  34. Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257–271.
  35. Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95–102. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S2056989016014298/hb7610sup1.cif

e-72-01456-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014298/hb7610Isup2.hkl

e-72-01456-Isup2.hkl (329.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016014298/hb7610Isup3.cml

CCDC reference: 1503436

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES