Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Sep 23;72(Pt 10):1460–1462. doi: 10.1107/S2056989016014754

The crystal structure of 6-(4-chloro­phen­yl)-2-(4-methyl­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde

A Sowmya a, G N Anil Kumar a,*, Sujeet Kumar b, Subhas S Karki b
PMCID: PMC5050776  PMID: 27746941

The title imidazo[2,1-b][1,3,4]thia­diazole derivative is non-planar, with the 4-methyl­benzyl and chloro­phenyl rings being inclined to the imidazo[2,1-b][1,3,4]thia­diazole ring system by 64.5 (1) and 3.7 (1)°, respectively.

Keywords: crystal structure; imidazo[2,1-b][1,3,4]thia­diazole; hydrogen bonding; C—H⋯π inter­actions

Abstract

In the title imidazo[2,1-b][1,3,4]thia­diazole derivative, C19H14ClN3OS, the 4-methyl­benzyl and chloro­phenyl rings are inclined to the planar imidazo[2,1-b][1,3,4]thia­diazole moiety (r.m.s. deviation = 0.012 Å) by 64.5 (1) and 3.7 (1)°, respectively. The mol­ecular structure is primarily stabilized by a strong intra­molecular C—H⋯O hydrogen bond, leading to the formation of a pseudo-seven-membered S(7) ring motif, and a short intra­molecular C—H⋯N contact forming an S(5) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯S hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O and C—H⋯π inter­actions, forming chains propagating along [110].

Chemical context  

The search for potential drugs to fight cancer and the design of mol­ecules with limited side effects, particularly to the immune system, is an emerging area of research. Imidazo[2,1-b][1,3,4]thia­diazole derivatives have been reported for their promising biological activities, and the most recent studies indicate their potential as anti­tumor agents (Karki et al., 2011). However, active heterocyclic pharmacophores particularly at position 5 of the imidazo[2,1-b][1,3,4]thia­diazole moiety have shown significant activities; substitution of aldehydes at the 5-position resulted in an improvement of their anti­cancer activity (Kumar et al., 2014), whereas a substituted phenyl group enhanced the anti-tubercular activity (Ramprasad et al., 2015). In view of the above, we report herein on the synthesis and crystal structure of title imidazo[2,1-b][1,3,4]thia­diazole derivative.graphic file with name e-72-01460-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The carbaldehyde group is coplanar with the imidazo­thia­diazole ring system and cis to the chloro­phenyl ring. Bond C12=O1 is cis to the C13—C14 bond, which favours the formation of an intra­molecular C15—H15⋯O1 hydrogen bond (Table 1). The imidazole and thia­diazole rings show different π conjugations, resulting from their fused nature and also due to the groups attached to them. This is evident from the differences in the bond lengths S1—C9 [1.772 (4) Å] and S1—C10 [1.724 (2) Å] of the thia­diazole ring, indicating that the resonance effect caused by the imidazole ring is stronger than that caused by the thia­diazole ring. As a result, the imidazole system is more resonance stabilized. Additionally, the imidazo­thia­diazole moiety is planar and rigid with maximum deviations of 0.0182 (2) and −0.0078 (3) Å for atoms N2 and C13, respectively, from the mean plane. The 4-chloro­phenyl ring makes a dihedral angle of 3.7 (1)°, whereas the 4-methyl­benzyl ring is inclined at an angle of 64.5 (1)° with respect to the mean plane of the imidazo­thia­diazole ring system. The mol­ecular structure is primarily stabilized by the strong intra­molecular C15—H15⋯O1 hydrogen bond, leading to the formation of a pseudo-seven-membered hydrogen-bonded S(7) ring motif, and an intra­molecular C19—H19⋯N3 inter­action forming an S(5) ring motif, thus locking the mol­ecular conformation and eliminating conformational flexibility (Fig. 1 and Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at 50% probability level. The intra­molecular inter­actions are shown as dashed lines (see Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.20 3.047 (3) 151
C19—H19⋯N3 0.93 2.42 2.788 (3) 103
C19—H19⋯S1i 0.93 2.83 3.733 (2) 165
C6—H6⋯O1ii 0.93 2.46 3.384 (3) 170
C18—H18⋯Cg i 0.93 2.92 3.648 (12) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, the solid-state structure is stabilized primarily by a pair of C—H⋯S hydrogen bonds, forming inversion dimers (Table 1 and Fig. 2). These dimers are linked by pairs of C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming chains propagating along [110]. There are no halogen inter­actions involving the chlorine atom, and no aromatic π–π stacking inter­actions present.

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. The inter­molecular inter­actions are shown as dashed lines (see Table 1) and, for clarity, H atoms not involved in these inter­actions have been omitted.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016) gave 55 hits for mol­ecules containing the imidazo[2,1-b][1,3,4]thia­diazole moiety. A search for 2-benzyl-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazo­les gave ten hits, and five of these compounds contain a 6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde moiety. It is inter­esting to note that the aldehyde group generally accepts a hydrogen bond, and that the para-substituted halogens do not generate any significant weak inter­actions in the crystal packing, except for a C—H⋯F inter­action in 2-(4-fluoro­benz­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde (OWIFAC; Banu et al., 2010), the 4-fluoro­benzyl analogue of the title compound.

Synthesis and crystallization  

The title compound was obtained according to a reported procedure (Kumar et al., 2014). The Vilsmeier reagent was prepared at 273–278 K by adding dropwise phospho­rous oxychloride (2.3 g, 15 mmol) into a stirred solution of DMF (10 ml). The 6-(4-chloro­phen­yl)-2-(4-methyl­benz­yl) imidazo[2,1-b][1,3,4]thia­diazole (4 mmol) was added slowly to the Vilsmeier reagent with stirring and cooling for 2 h. Further stirring was continued for 6 h at 353–363 K. The reaction mixture was then poured into 100 ml of water. The precipitate obtained was filtered, and neutralized with a cold aqueous solution of sodium carbonate. The solid obtained was filtered, washed with water and dried. Single crystals were obtained by slow evaporation of a solution in ethanol/DMF (2:1 v:v).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and constrained to ride on their parent atoms with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C,N) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C19H14ClN3OS
M r 367.84
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 5.6138 (18), 9.018 (2), 16.514 (5)
α, β, γ (°) 80.533 (13), 87.519 (14), 83.353 (14)
V3) 818.9 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.941, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 12059, 2966, 2530
R int 0.059
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.110, 1.05
No. of reflections 2966
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.26

Computer programs: SMART and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), CAMERON (Watkin et al., 1996), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016014754/su5325sup1.cif

e-72-01460-sup1.cif (424.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014754/su5325Isup2.hkl

e-72-01460-Isup2.hkl (237KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016014754/su5325Isup3.cml

CCDC reference: 1504989

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and DST India, for the data collection on the CCD facility. GNA thanks MSRIT for encouragement.

supplementary crystallographic information

Crystal data

C19H14ClN3OS Z = 2
Mr = 367.84 F(000) = 380
Triclinic, P1 Dx = 1.492 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6138 (18) Å Cell parameters from 1890 reflections
b = 9.018 (2) Å θ = 3.3–26.4°
c = 16.514 (5) Å µ = 0.37 mm1
α = 80.533 (13)° T = 296 K
β = 87.519 (14)° Block, colourless
γ = 83.353 (14)° 0.20 × 0.15 × 0.10 mm
V = 818.9 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2966 independent reflections
Radiation source: fine-focus sealed tube 2530 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.059
ω and φ scans θmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −6→6
Tmin = 0.941, Tmax = 0.971 k = −11→11
12059 measured reflections l = −20→20

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.289P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.40 e Å3
2966 reflections Δρmin = −0.26 e Å3
228 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015)
0 restraints Extinction coefficient: 0.015 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13628 (9) 0.55026 (6) 0.09398 (3) 0.01783 (18)
Cl1 0.76563 (10) 1.05603 (6) −0.41113 (3) 0.02857 (19)
O1 −0.2181 (3) 1.11191 (15) −0.14801 (9) 0.0188 (4)
N1 −0.2122 (3) 0.76902 (19) 0.06190 (10) 0.0169 (4)
N2 −0.0436 (3) 0.77957 (18) −0.00135 (10) 0.0149 (4)
N3 0.3040 (3) 0.69994 (18) −0.05952 (10) 0.0158 (4)
C1 0.2608 (4) 0.3316 (3) 0.48434 (13) 0.0254 (5)
H1A 0.3880 0.3909 0.4910 0.038*
H1B 0.3278 0.2319 0.4766 0.038*
H1C 0.1580 0.3249 0.5325 0.038*
C2 0.1165 (4) 0.4061 (2) 0.41000 (12) 0.0182 (5)
C3 −0.0867 (4) 0.3460 (2) 0.38955 (13) 0.0194 (5)
H3 −0.1379 0.2620 0.4234 0.023*
C4 −0.2144 (4) 0.4091 (2) 0.31943 (12) 0.0170 (5)
H4 −0.3490 0.3668 0.3070 0.020*
C5 −0.1425 (4) 0.5349 (2) 0.26779 (12) 0.0164 (5)
C6 0.0587 (4) 0.5973 (2) 0.28907 (13) 0.0187 (5)
H6 0.1082 0.6825 0.2559 0.022*
C7 0.1852 (4) 0.5335 (2) 0.35916 (13) 0.0183 (5)
H7 0.3182 0.5768 0.3722 0.022*
C8 −0.2861 (4) 0.6024 (2) 0.19192 (13) 0.0202 (5)
H8A −0.3853 0.5279 0.1800 0.024*
H8B −0.3928 0.6887 0.2045 0.024*
C9 −0.1409 (4) 0.6527 (2) 0.11621 (12) 0.0171 (5)
C10 0.1526 (4) 0.6762 (2) 0.00375 (12) 0.0159 (5)
C11 −0.0221 (4) 0.8823 (2) −0.07365 (12) 0.0152 (4)
C12 −0.2119 (4) 1.0071 (2) −0.09103 (13) 0.0174 (5)
H12 −0.3429 1.0065 −0.0545 0.021*
C13 0.1975 (4) 0.8283 (2) −0.10865 (12) 0.0153 (5)
C14 0.3268 (4) 0.8852 (2) −0.18484 (12) 0.0157 (4)
C15 0.2369 (4) 1.0111 (3) −0.24086 (13) 0.0242 (5)
H15 0.0863 1.0608 −0.2313 0.029*
C16 0.3697 (4) 1.0622 (3) −0.31028 (14) 0.0257 (5)
H16 0.3084 1.1459 −0.3471 0.031*
C17 0.5944 (4) 0.9882 (2) −0.32487 (13) 0.0198 (5)
C18 0.6866 (4) 0.8621 (2) −0.27129 (13) 0.0185 (5)
H18 0.8365 0.8122 −0.2816 0.022*
C19 0.5524 (4) 0.8117 (2) −0.20223 (13) 0.0171 (5)
H19 0.6135 0.7266 −0.1663 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0166 (3) 0.0178 (3) 0.0168 (3) 0.0008 (2) −0.0021 (2) 0.0024 (2)
Cl1 0.0260 (4) 0.0312 (3) 0.0236 (3) 0.0007 (2) 0.0075 (2) 0.0052 (2)
O1 0.0177 (8) 0.0161 (8) 0.0209 (8) 0.0003 (6) −0.0028 (6) 0.0018 (6)
N1 0.0156 (10) 0.0195 (9) 0.0147 (9) −0.0018 (7) −0.0001 (7) −0.0003 (7)
N2 0.0126 (10) 0.0169 (9) 0.0148 (9) −0.0014 (7) −0.0014 (7) −0.0011 (7)
N3 0.0155 (10) 0.0146 (9) 0.0160 (9) −0.0001 (7) −0.0027 (7) 0.0002 (7)
C1 0.0276 (14) 0.0288 (12) 0.0171 (11) 0.0048 (10) −0.0011 (10) −0.0007 (9)
C2 0.0189 (12) 0.0200 (11) 0.0138 (10) 0.0065 (8) 0.0032 (9) −0.0037 (8)
C3 0.0230 (13) 0.0156 (11) 0.0169 (11) 0.0009 (8) 0.0053 (9) 0.0013 (8)
C4 0.0155 (12) 0.0185 (11) 0.0171 (11) −0.0013 (8) 0.0027 (9) −0.0044 (8)
C5 0.0141 (12) 0.0188 (11) 0.0146 (10) 0.0026 (8) 0.0008 (8) −0.0014 (8)
C6 0.0172 (12) 0.0172 (11) 0.0198 (11) −0.0003 (8) 0.0041 (9) 0.0003 (9)
C7 0.0143 (12) 0.0217 (11) 0.0191 (11) 0.0002 (8) 0.0000 (9) −0.0051 (9)
C8 0.0140 (12) 0.0238 (12) 0.0205 (11) −0.0014 (8) −0.0010 (9) 0.0026 (9)
C9 0.0148 (12) 0.0197 (11) 0.0169 (11) −0.0012 (8) −0.0045 (9) −0.0024 (8)
C10 0.0151 (12) 0.0140 (10) 0.0183 (11) −0.0002 (8) −0.0033 (9) −0.0022 (8)
C11 0.0162 (12) 0.0165 (10) 0.0123 (10) −0.0026 (8) −0.0017 (8) 0.0006 (8)
C12 0.0132 (12) 0.0197 (11) 0.0197 (11) −0.0016 (8) −0.0012 (9) −0.0044 (9)
C13 0.0143 (11) 0.0153 (10) 0.0165 (11) −0.0008 (8) −0.0062 (8) −0.0024 (8)
C14 0.0166 (12) 0.0156 (10) 0.0157 (10) −0.0027 (8) −0.0027 (8) −0.0038 (8)
C15 0.0180 (13) 0.0289 (13) 0.0216 (12) 0.0060 (9) 0.0020 (9) 0.0015 (10)
C16 0.0210 (13) 0.0272 (12) 0.0227 (12) 0.0059 (9) −0.0001 (10) 0.0079 (9)
C17 0.0212 (13) 0.0228 (11) 0.0149 (11) −0.0023 (9) 0.0003 (9) −0.0015 (9)
C18 0.0157 (12) 0.0181 (11) 0.0212 (11) 0.0027 (8) 0.0010 (9) −0.0049 (9)
C19 0.0181 (12) 0.0133 (10) 0.0193 (11) 0.0007 (8) −0.0033 (9) −0.0017 (8)

Geometric parameters (Å, º)

S1—C10 1.724 (2) C5—C8 1.521 (3)
S1—C9 1.772 (2) C6—C7 1.390 (3)
Cl1—C17 1.749 (2) C6—H6 0.9300
O1—C12 1.218 (2) C7—H7 0.9300
N1—C9 1.299 (3) C8—C9 1.498 (3)
N1—N2 1.378 (2) C8—H8A 0.9700
N2—C10 1.355 (3) C8—H8B 0.9700
N2—C11 1.395 (3) C11—C13 1.408 (3)
N3—C10 1.323 (3) C11—C12 1.458 (3)
N3—C13 1.389 (2) C12—H12 0.9300
C1—C2 1.518 (3) C13—C14 1.472 (3)
C1—H1A 0.9600 C14—C19 1.401 (3)
C1—H1B 0.9600 C14—C15 1.400 (3)
C1—H1C 0.9600 C15—C16 1.383 (3)
C2—C7 1.390 (3) C15—H15 0.9300
C2—C3 1.395 (3) C16—C17 1.388 (3)
C3—C4 1.393 (3) C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.384 (3)
C4—C5 1.391 (3) C18—C19 1.382 (3)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.401 (3) C19—H19 0.9300
C10—S1—C9 87.97 (10) H8A—C8—H8B 107.5
C9—N1—N2 108.08 (16) N1—C9—C8 122.86 (19)
C10—N2—N1 118.52 (17) N1—C9—S1 116.07 (16)
C10—N2—C11 108.08 (17) C8—C9—S1 121.03 (15)
N1—N2—C11 133.36 (17) N3—C10—N2 113.00 (18)
C10—N3—C13 104.36 (16) N3—C10—S1 137.61 (15)
C2—C1—H1A 109.5 N2—C10—S1 109.37 (15)
C2—C1—H1B 109.5 N2—C11—C13 103.37 (17)
H1A—C1—H1B 109.5 N2—C11—C12 117.73 (19)
C2—C1—H1C 109.5 C13—C11—C12 138.89 (19)
H1A—C1—H1C 109.5 O1—C12—C11 127.2 (2)
H1B—C1—H1C 109.5 O1—C12—H12 116.4
C7—C2—C3 117.96 (19) C11—C12—H12 116.4
C7—C2—C1 121.3 (2) N3—C13—C11 111.17 (18)
C3—C2—C1 120.7 (2) N3—C13—C14 117.41 (18)
C2—C3—C4 121.3 (2) C11—C13—C14 131.42 (18)
C2—C3—H3 119.4 C19—C14—C15 117.89 (19)
C4—C3—H3 119.4 C19—C14—C13 118.83 (18)
C5—C4—C3 120.6 (2) C15—C14—C13 123.27 (19)
C5—C4—H4 119.7 C16—C15—C14 120.7 (2)
C3—C4—H4 119.7 C16—C15—H15 119.6
C4—C5—C6 118.18 (19) C14—C15—H15 119.6
C4—C5—C8 119.60 (19) C15—C16—C17 119.9 (2)
C6—C5—C8 122.20 (19) C15—C16—H16 120.1
C7—C6—C5 120.8 (2) C17—C16—H16 120.1
C7—C6—H6 119.6 C18—C17—C16 120.8 (2)
C5—C6—H6 119.6 C18—C17—Cl1 119.38 (17)
C2—C7—C6 121.1 (2) C16—C17—Cl1 119.84 (16)
C2—C7—H7 119.4 C19—C18—C17 118.9 (2)
C6—C7—H7 119.4 C19—C18—H18 120.5
C9—C8—C5 115.50 (18) C17—C18—H18 120.5
C9—C8—H8A 108.4 C18—C19—C14 121.79 (19)
C5—C8—H8A 108.4 C18—C19—H19 119.1
C9—C8—H8B 108.4 C14—C19—H19 119.1
C5—C8—H8B 108.4
C9—N1—N2—C10 −0.5 (2) C9—S1—C10—N2 −0.02 (15)
C9—N1—N2—C11 −177.9 (2) C10—N2—C11—C13 0.5 (2)
C7—C2—C3—C4 1.4 (3) N1—N2—C11—C13 178.12 (18)
C1—C2—C3—C4 −177.03 (18) C10—N2—C11—C12 −178.46 (17)
C2—C3—C4—C5 −0.2 (3) N1—N2—C11—C12 −0.9 (3)
C3—C4—C5—C6 −1.1 (3) N2—C11—C12—O1 175.43 (19)
C3—C4—C5—C8 −179.56 (19) C13—C11—C12—O1 −3.1 (4)
C4—C5—C6—C7 1.1 (3) C10—N3—C13—C11 0.1 (2)
C8—C5—C6—C7 179.56 (19) C10—N3—C13—C14 179.35 (17)
C3—C2—C7—C6 −1.4 (3) N2—C11—C13—N3 −0.4 (2)
C1—C2—C7—C6 177.07 (19) C12—C11—C13—N3 178.2 (2)
C5—C6—C7—C2 0.1 (3) N2—C11—C13—C14 −179.49 (19)
C4—C5—C8—C9 −139.6 (2) C12—C11—C13—C14 −0.8 (4)
C6—C5—C8—C9 41.9 (3) N3—C13—C14—C19 −2.5 (3)
N2—N1—C9—C8 −177.12 (17) C11—C13—C14—C19 176.5 (2)
N2—N1—C9—S1 0.5 (2) N3—C13—C14—C15 178.33 (18)
C5—C8—C9—N1 −146.1 (2) C11—C13—C14—C15 −2.7 (3)
C5—C8—C9—S1 36.4 (3) C19—C14—C15—C16 −1.1 (3)
C10—S1—C9—N1 −0.27 (17) C13—C14—C15—C16 178.0 (2)
C10—S1—C9—C8 177.37 (18) C14—C15—C16—C17 0.0 (4)
C13—N3—C10—N2 0.2 (2) C15—C16—C17—C18 0.9 (3)
C13—N3—C10—S1 −178.12 (18) C15—C16—C17—Cl1 −178.23 (18)
N1—N2—C10—N3 −178.50 (16) C16—C17—C18—C19 −0.8 (3)
C11—N2—C10—N3 −0.5 (2) Cl1—C17—C18—C19 178.40 (15)
N1—N2—C10—S1 0.3 (2) C17—C18—C19—C14 −0.4 (3)
C11—N2—C10—S1 178.32 (13) C15—C14—C19—C18 1.3 (3)
C9—S1—C10—N3 178.4 (2) C13—C14—C19—C18 −177.90 (18)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
C15—H15···O1 0.93 2.20 3.047 (3) 151
C19—H19···N3 0.93 2.42 2.788 (3) 103
C19—H19···S1i 0.93 2.83 3.733 (2) 165
C6—H6···O1ii 0.93 2.46 3.384 (3) 170
C18—H18···Cgi 0.93 2.92 3.648 (12) 136

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z.

References

  1. Banu, A., Lamani, R. S., Khazi, I. M. & Begum, N. S. (2010). Mol. Cryst. Liq. Cryst. 533, 141–151.
  2. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109–2116. [DOI] [PubMed]
  6. Kumar, S., Hegde, M., Gopalakrishnan, V., Renuka, V. K., Ramareddy, S. A., De Clercq, E., Schols, D., Gudibabande Narasimhamurthy, A. K., Raghavan, S. C. & Karki, S. S. (2014). Eur. J. Med. Chem. 84, 687–697. [DOI] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Ramprasad, J., Nayak, N., Dalimba, U., Yogeeswari, P., Sriram, D., Peethambar, S. K., Achur, R. & Kumar, H. S. S. (2015). Eur. J. Med. Chem. 95, 49–63. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016014754/su5325sup1.cif

e-72-01460-sup1.cif (424.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014754/su5325Isup2.hkl

e-72-01460-Isup2.hkl (237KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016014754/su5325Isup3.cml

CCDC reference: 1504989

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES