The coordination polymeric silver(I)–diclofenac complex including pyrimidine is based on a centrosymmetric carboxylate O:O′-bridged dinuclear unit which is extended through N-atom donors of the pyrimidine ligand into a two-dimensional layered structure
Keywords: crystal structure, silver(I) complex, non-steroidal anti-inflammatory drug, diclofenac, two-dimensional coordination polymer
Abstract
In the title mixed-ligand silver(I) coordination polymeric complex with the non-steroidal anti-inflammatory drug diclofenac (C14H11Cl2NO2) (diclH) and pyrimidine (pym), namely poly[{μ2-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ2 O:O′}(μ2-pyrimidine-κ2 N 1:N 3)silver(I)], [Ag(C14H10Cl2NO2)(C4H4N2)]n or [Ag(μ-dicl)(μ-pym)]n, the very distorted tetrahedral AgN2O2 coordination centres comprise two N-atom donors from bridging pym ligands [Ag—N = 2.381 (3) and 2.412 (3) Å] and two carboxylate O-atom donors from dicl ligands [Ag—O = 2.279 (2) and 2.280 (2) Å], which bridge Ag atoms, giving a centrosymmetric dinuclear units with a short Ag⋯Ag separation [2.8931 (5) Å]. Within the units are short intraligand C—Cl⋯π(pym) interactions [3.6409 (15) Å]. The units are linked through the bridging N atoms of the pym ligand into a two-dimensional sheet–polymer structure lying parallel to (100) and stabilized by inter-ring π–π interactions between the pym ligands [Cg⋯Cg = 3.4199 (17) Å]. Additional inter-unit C—H⋯O and C—H⋯Cg hydrogen-bonding interactions between the sheets give an overall three-dimensional structure.
Chemical context
The design of coordination polymers based on silver(I) has been studied extensively in recent years because of their various structural topologies as well as photoluminescent properties and antimicrobial activity. These studies have shown that short Ag⋯Ag separations are one of the most important factors for the manifestation of such properties [Yam & Lo, 1999 ▸; Pyykkö et al., 1997 ▸; Wang & Cohen, 2009 ▸; Zhang et al., 2009 ▸, Njogu et al., 2015 ▸; Nomiya et al., 2000 ▸]. On the other hand, it is known that to construct extended coordination networks with polynuclear metal-based structures, ligands of various binding sites and shapes have to be taken into account. At this stage, confidence in accomplishing this goal is based upon the sophisticated selection and utilization of suitable multifunctional organic ligands with certain features, such as being a multiple donor and having versatile bonding modes or the ability to take part in hydrogen bonding. Aromatic carboxylate derivatives have therefore been of interest in coordination and supramolecular chemistry.
The chemical classes of non-steroidal anti-inflammatory drugs (NSAIDs) consist of salicylate derivatives, phenylalkanoic acids, oxicams, anthranilic acids, sulfonamides and furanones (Weder et al., 2002 ▸). These compounds are some of the most commonly used medications to reduce pain, and diclofenac (dicl), [2-(2,6-dicholoroanilino)phenylacetic acid], is a member of the group of phenylalkanoic acids. Additionally, NSAIDs are used as anti-inflammatories, antipyretics and antitumor drugs. (Kim et al., 2004 ▸; Ribeiro et al., 2008 ▸; Duffy et al., 1998 ▸). In previous publications, the crystal structures of metal complexes of diclofenac have been reported (Caglar et al., 2013 ▸, 2014 ▸; Ali & Jabali, 2016 ▸; Dimiza et al., 2011 ▸; Kovala-Demertzi et al., 1997 ▸; Castellari et al., 1999 ▸; Kourkoumelis et al., 2004 ▸) and in addition its molecular structure has been characterized by various techniques (Iliescu et al., 2004 ▸). Based on the above-mentioned points, we report herein the synthesis and structural characterization of a new mixed-ligand silver(I) complex with dicl and pyrimidine (pym), namely [Ag(μ-dicl)(μ-pym)]n, (I).
Structural commentary
In (I), Ag1 atoms are four-coordinated by two carboxylate oxygen atoms [O2 and O1i; symmetry code: (i) −x + 1, −y + 1, −z + 2] from separate dicl ligands and two nitrogen atoms [N2 and N3ii; symmetry code: (ii) x, −y + , −z +
] from two separate pym ligands (Fig. 1 ▸). The discrimination parameter for the AgN2O2 core {τ4 = [(360° − (α + β)]/141°}, where α and β are the largest angles around the metal atom) is 0.732 and indicates substantial deviation from ideal tetrahedral geometry (Yang et al., 2007 ▸). The Ag—N bond lengths [2.381 (3) and 2.412 (3) Å] (Table 1 ▸) are similar to those found in the polymeric mixed-ligand silver(I) complex with 3,5-pyridinedicarboxylate (pydc) and (pym), [Ag4(μ-pydc)2(μ-pym)2]n [2.313 (5), 2.436 (5) and 2.490 (5) Å; Hamamci Alisir et al., 2015 ▸). The Ag—O bond lengths in (I) [2.279 (2) and 2.280 (2) Å] are longer than those in [Ag2(sal)2]n (sal = salicylate; 2.1887–2.2043 Å; Azócar et al., 2013 ▸) but shorter than those found in other silver carboxylate complexes (Wu & Mak, 1995 ▸; Zhang et al., 2015 ▸; Olson et al., 2006 ▸). Each pair of silver(I) atoms in the title complex is bridged by the μ2-carboxylato-O,O′ groups of dicl, forming centrosymmetric dinuclear [Ag2(μ-dicl)2] units (Fig. 2 ▸). Within the units are short intraligand C1—Cl1⋯π interactions to the pym ligands [3.6409 (15) Å]. The Ag1⋯Ag1i separation in the unit [2.8931 (5) Å] is significantly shorter than the sum of the van der Waals radii for two silver atoms (3.44 Å), indicating weak interactions between adjacent AgI ions, forming an [Ag2(COO)2] units. If coexisting strong argentophilic Ag1⋯Ag1i interactions are considered as coordinative, it could be reasoned that the coordination around Ag1 is slightly distorted trigonal–bipyramidal [the structural distortion index tau (τ) was calculated to be 0.06] (Addison et al., 1984 ▸).
Figure 1.
The molecular configuration and atom-labelling scheme for the title complex, (I), with displacement ellipsoids drawn at the 30% level. For symmetry codes (i) and (ii), see Table 1 ▸.
Table 1. Selected geometric parameters (Å, °).
Ag1—O2 | 2.279 (2) | Ag1—N3ii | 2.412 (3) |
Ag1—O1i | 2.280 (2) | Ag1—Ag1i | 2.8931 (5) |
Ag1—N2 | 2.381 (3) | ||
O2—Ag1—O1i | 148.04 (10) | O2—Ag1—Ag1i | 81.70 (6) |
O2—Ag1—N2 | 99.71 (8) | O1i—Ag1—Ag1i | 76.19 (6) |
O1i—Ag1—N2 | 89.58 (8) | N2—Ag1—Ag1i | 151.80 (6) |
O1i—Ag1—N3ii | 108.69 (9) | N3ii—Ag1—Ag1i | 99.73 (6) |
N2—Ag1—N3ii | 107.93 (9) |
Symmetry codes: (i) ; (ii)
.
Figure 2.
A view of the centrosymmetric caboxylate-bridged dinuclear [Ag2(μ-dicl)2] unit in (I). H atoms have been omitted.
As illustrated in Fig. 3 ▸, in the title complex, the pym ligand acts as a μ2-N,N1-bridging ligand between neighboring [Ag2(COO)2] units, leading to the formation of a two-dimensional coordination polymer, extending along (100) (Fig. 4 ▸). In other words, [Ag2(COO)2] units, which comprise eight-membered rings, can be defined as the nodes of the structure. Connection of the four different pym ligands to these nodes provides continuity of the structure (Fig. 4 ▸).
Figure 3.
A partial expansion of the dinuclear unit in (I) through the pym ligands, also showing the pym⋯pym π–π ring interactions.
Figure 4.
The layered structure of (I). H atoms and part of the dicl ligands have been omitted.
In the dicl ligand, the two benzene rings form a dihedral angle of 61.42 (5)°, the conformation of the ligand being stabilized by an intramolecular N1—H1⋯O2carboxyl hydrogen-bonding interaction [2.971 (3) Å] (Table 2 ▸).
Table 2. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1—H1⋯O2 | 0.86 | 2.43 | 2.971 (3) | 122 |
C16—H16⋯O1iii | 0.93 | 2.51 | 3.248 (4) | 136 |
C13—H13B⋯Cg6iv | 0.97 | 3.30 | 3.983 (3) | 129 |
Symmetry codes: (iii) ; (iv)
.
Supramolecular features
In the crystal, a C16—H16⋯O1iii hydrogen-bonding interaction stabilizes the crystal packing (Table 2 ▸). In addition, there is a weak C13—H13⋯Cg6iv interaction to a pym ring [3.983 Å] and a strong π–π stacking interaction between aromatic rings of the pym ligands [Cg3⋯Cg3v = 3.4199 (17) Å; Cg3 is the centroid of the N2/C15/N3/C216–C18 ring; symmetry code (v): −x + 1, −y + 1, −z + 1], shown in Fig. 3 ▸. These interactions are significant for holding layers together in the solid state and generating an overall three-dimensional framework structure (Fig. 5 ▸).
Figure 5.
The packing of (I) in the unit cell viewed along the b axis.
Synthesis and crystallization
All reactions were performed with commercially available reagents and used without further purification. Solid sodium 2-(2,6-dicholoroanilino)phenylacetate (Nadicl) (0.32 g, 1 mmol) and pyrimidine (0.08 g, 1 mol) were added to an aqueous solution (10 cm3) of AgNO3 (0.17 g, 1 mmol) with stirring. A white suspension with a white precipitate formed and the addition of acetonitrile (10 cm3) to this resulted in a clear solution which was left to stand for slow evaporation in darkness at room temperature. Single crystals of (I) suitable for X-ray analysis were obtained within a few days.
Spectroscopy
The infrared spectrum was obtained using a Perkin Elmer Spectrum Two FTIR with a diamond Attenuated Total Reflectance attachment (ATR) in the frequency range 4000–600 cm−1. The sample was placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. The characteristic absorption bands of Nadicl and the title complex are listed in Table 3 ▸. The spectrum is deposited as a supplementary Fig. S1.
Table 3. Selected comparative IR spectral data for Nadicl and the dicl ligand in (I).
Frequencies in cm−1; w, weak; m, medium; s, strong; vs, very strong. Nadicl = sodium 2-(2,6-dichloroanilino)phenylacetate.
Assignment | Nadicl | (I) | |
---|---|---|---|
ν(NH) | 3250 (m) | 3307 (m) | |
νar(CH) | 3060 (vw) | 3064–3029 (vw) | |
νal(CH) | 2980 (vw) | 2956–2890 (vw) | |
νas(COO) | 1572 (vs) | 1548 (vs) | |
νs(COO) | 1399 (w) | 1365 (vs) | |
ν(CCl) | 768 (s) | 768 (vs) |
The characteristic absorption band in the FT–IR spectra of the carboxylate complexes is the asymmetric (υas) and symmetric (υs) vibrations of the carboxylate group. The difference between the asymmetric and symmetric carboxylate stretching [Δν = υas(COO−) - υs(COO−)] is often used to correlate the infrared spectra of metal carboxylate structures. When Δν < 200 cm−1, the carboxylate groups of the complexes can be considered bidentate (Azócar et al., 2013 ▸). The value of Δν is calculated as 183 cm−1 for 1. Based on the above-mentioned points, it is suggested that carboxylate groups in the complex exhibit a bidentate coordination mode, as revealed by the structural analysis.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. All C-bound hydrogen atoms in (I) were included in calculated positions with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and allowed to ride, with U iso(H) = 1.2U eq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the refinement with U iso(H) = 1.2U eq(N).
Table 4. Experimental details.
Crystal data | |
Chemical formula | [Ag(C14H10Cl2NO2)(C4H4N2)] |
M r | 483.09 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.5886 (4), 9.3071 (4), 10.6646 (8) |
β (°) | 105.644 (3) |
V (Å3) | 1776.69 (16) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 1.45 |
Crystal size (mm) | 0.60 × 0.46 × 0.27 |
Data collection | |
Diffractometer | Stoe IPDS2 |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002 ▸) |
T min, T max | 0.471, 0.693 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13090, 4538, 3672 |
R int | 0.088 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.039, 0.095, 1.04 |
No. of reflections | 4538 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −1.14 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016014730/zs2370sup3.tif
CCDC reference: 1500646
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
[Ag(C14H10Cl2NO2)(C4H4N2)] | F(000) = 960 |
Mr = 483.09 | Dx = 1.806 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.5886 (4) Å | Cell parameters from 13681 reflections |
b = 9.3071 (4) Å | θ = 2.0–29.1° |
c = 10.6646 (8) Å | µ = 1.45 mm−1 |
β = 105.644 (3)° | T = 293 K |
V = 1776.69 (16) Å3 | Prism, colorless |
Z = 4 | 0.60 × 0.46 × 0.27 mm |
Data collection
Stoe IPDS2 diffractometer | 3672 reflections with I > 2σ(I) |
ω–scan rotation method | Rint = 0.088 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | θmax = 28.7°, θmin = 2.3° |
Tmin = 0.471, Tmax = 0.693 | h = −24→24 |
13090 measured reflections | k = −12→12 |
4538 independent reflections | l = −14→14 |
Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0488P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.57 e Å−3 |
4538 reflections | Δρmin = −1.14 e Å−3 |
236 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0206 (11) |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.17222 (14) | 0.3200 (3) | 0.6246 (3) | 0.0419 (6) | |
C2 | 0.12206 (16) | 0.2364 (3) | 0.5353 (3) | 0.0496 (7) | |
H2 | 0.1387 | 0.1695 | 0.4847 | 0.060* | |
C3 | 0.04629 (16) | 0.2541 (4) | 0.5223 (4) | 0.0546 (8) | |
H3 | 0.0116 | 0.2009 | 0.4607 | 0.065* | |
C4 | 0.02263 (15) | 0.3495 (4) | 0.5995 (3) | 0.0505 (7) | |
H4 | −0.0282 | 0.3603 | 0.5912 | 0.061* | |
C5 | 0.07381 (14) | 0.4302 (3) | 0.6904 (3) | 0.0406 (6) | |
C6 | 0.15110 (13) | 0.4220 (3) | 0.7029 (3) | 0.0381 (5) | |
C7 | 0.19762 (12) | 0.6542 (3) | 0.8068 (3) | 0.0377 (5) | |
C8 | 0.15520 (14) | 0.7377 (3) | 0.7067 (3) | 0.0451 (6) | |
H8 | 0.1312 | 0.6953 | 0.6275 | 0.054* | |
C9 | 0.14820 (16) | 0.8839 (4) | 0.7235 (4) | 0.0529 (8) | |
H9 | 0.1197 | 0.9397 | 0.6558 | 0.063* | |
C10 | 0.18355 (17) | 0.9463 (3) | 0.8408 (4) | 0.0573 (9) | |
H10 | 0.1785 | 1.0443 | 0.8535 | 0.069* | |
C11 | 0.22657 (15) | 0.8624 (3) | 0.9396 (4) | 0.0501 (7) | |
H11 | 0.2502 | 0.9054 | 1.0187 | 0.060* | |
C12 | 0.23575 (12) | 0.7165 (3) | 0.9249 (3) | 0.0391 (6) | |
C13 | 0.28437 (13) | 0.6294 (4) | 1.0340 (3) | 0.0437 (6) | |
H13A | 0.2575 | 0.5429 | 1.0448 | 0.052* | |
H13B | 0.2930 | 0.6843 | 1.1140 | 0.052* | |
C14 | 0.36042 (13) | 0.5857 (3) | 1.0147 (3) | 0.0367 (5) | |
C15 | 0.44153 (16) | 0.3069 (3) | 0.5812 (3) | 0.0444 (6) | |
H15 | 0.4577 | 0.2251 | 0.6310 | 0.053* | |
C16 | 0.40626 (15) | 0.4123 (3) | 0.3828 (3) | 0.0461 (6) | |
H16 | 0.3968 | 0.4080 | 0.2926 | 0.055* | |
C17 | 0.39630 (16) | 0.5399 (4) | 0.4394 (3) | 0.0489 (7) | |
H17 | 0.3807 | 0.6220 | 0.3899 | 0.059* | |
C18 | 0.41040 (15) | 0.5417 (3) | 0.5740 (3) | 0.0461 (6) | |
H18 | 0.4038 | 0.6266 | 0.6154 | 0.055* | |
Ag1 | 0.46373 (2) | 0.43353 (3) | 0.87652 (2) | 0.04354 (10) | |
Cl1 | 0.26694 (4) | 0.29612 (9) | 0.63922 (10) | 0.0610 (2) | |
Cl2 | 0.03984 (4) | 0.54045 (9) | 0.79226 (9) | 0.05280 (19) | |
N1 | 0.20327 (12) | 0.5025 (3) | 0.7931 (3) | 0.0443 (5) | |
H1 | 0.2409 | 0.4588 | 0.8434 | 0.053* | |
N2 | 0.43318 (12) | 0.4245 (3) | 0.6450 (2) | 0.0425 (5) | |
N3 | 0.42916 (13) | 0.2935 (3) | 0.4527 (2) | 0.0457 (5) | |
O1 | 0.41252 (11) | 0.5735 (3) | 1.1157 (2) | 0.0586 (6) | |
O2 | 0.36494 (11) | 0.5641 (3) | 0.9022 (2) | 0.0590 (6) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0374 (11) | 0.0372 (13) | 0.0497 (15) | 0.0009 (10) | 0.0092 (11) | 0.0018 (13) |
C2 | 0.0522 (15) | 0.0425 (15) | 0.0518 (17) | −0.0023 (12) | 0.0097 (13) | −0.0065 (14) |
C3 | 0.0458 (14) | 0.0469 (16) | 0.063 (2) | −0.0076 (12) | 0.0001 (13) | −0.0057 (16) |
C4 | 0.0350 (12) | 0.0496 (17) | 0.062 (2) | −0.0056 (11) | 0.0045 (12) | 0.0027 (15) |
C5 | 0.0362 (11) | 0.0378 (13) | 0.0472 (15) | 0.0012 (10) | 0.0104 (11) | 0.0046 (12) |
C6 | 0.0341 (10) | 0.0344 (12) | 0.0430 (14) | 0.0025 (9) | 0.0055 (10) | 0.0047 (11) |
C7 | 0.0293 (10) | 0.0376 (13) | 0.0472 (14) | 0.0020 (9) | 0.0119 (10) | 0.0004 (12) |
C8 | 0.0339 (11) | 0.0495 (15) | 0.0504 (16) | 0.0006 (11) | 0.0090 (11) | 0.0030 (14) |
C9 | 0.0402 (13) | 0.0480 (16) | 0.072 (2) | 0.0062 (12) | 0.0182 (14) | 0.0166 (17) |
C10 | 0.0468 (15) | 0.0384 (15) | 0.089 (3) | 0.0036 (12) | 0.0230 (16) | −0.0026 (17) |
C11 | 0.0383 (12) | 0.0468 (16) | 0.067 (2) | −0.0010 (11) | 0.0167 (13) | −0.0129 (15) |
C12 | 0.0267 (10) | 0.0422 (14) | 0.0502 (15) | 0.0005 (9) | 0.0135 (10) | −0.0046 (12) |
C13 | 0.0319 (11) | 0.0561 (17) | 0.0432 (15) | 0.0005 (11) | 0.0102 (10) | −0.0061 (14) |
C14 | 0.0303 (10) | 0.0338 (12) | 0.0445 (14) | 0.0008 (9) | 0.0074 (10) | −0.0019 (11) |
C15 | 0.0539 (14) | 0.0419 (14) | 0.0395 (14) | 0.0020 (12) | 0.0159 (12) | 0.0026 (13) |
C16 | 0.0441 (13) | 0.0577 (18) | 0.0356 (13) | −0.0024 (12) | 0.0094 (11) | 0.0018 (13) |
C17 | 0.0451 (13) | 0.0503 (16) | 0.0493 (16) | 0.0086 (12) | 0.0096 (12) | 0.0110 (14) |
C18 | 0.0404 (12) | 0.0432 (15) | 0.0522 (17) | 0.0056 (11) | 0.0084 (12) | −0.0035 (13) |
Ag1 | 0.04020 (13) | 0.05477 (15) | 0.03712 (13) | 0.00513 (8) | 0.01297 (8) | −0.00042 (10) |
Cl1 | 0.0401 (3) | 0.0555 (4) | 0.0877 (6) | 0.0068 (3) | 0.0176 (3) | −0.0087 (5) |
Cl2 | 0.0458 (3) | 0.0534 (4) | 0.0647 (5) | 0.0013 (3) | 0.0243 (3) | −0.0020 (4) |
N1 | 0.0344 (10) | 0.0402 (12) | 0.0504 (14) | 0.0065 (9) | −0.0019 (9) | −0.0026 (11) |
N2 | 0.0401 (10) | 0.0500 (14) | 0.0375 (11) | 0.0031 (9) | 0.0104 (9) | −0.0026 (11) |
N3 | 0.0534 (13) | 0.0460 (13) | 0.0392 (12) | −0.0014 (10) | 0.0149 (10) | −0.0015 (11) |
O1 | 0.0334 (9) | 0.0967 (19) | 0.0426 (11) | 0.0109 (10) | 0.0049 (8) | 0.0071 (12) |
O2 | 0.0412 (10) | 0.0880 (18) | 0.0456 (12) | 0.0186 (10) | 0.0080 (9) | −0.0133 (12) |
Geometric parameters (Å, º)
C1—C2 | 1.379 (4) | C12—C13 | 1.504 (4) |
C1—C6 | 1.390 (4) | C13—C14 | 1.537 (3) |
C1—Cl1 | 1.739 (3) | C13—H13A | 0.9700 |
C2—C3 | 1.387 (4) | C13—H13B | 0.9700 |
C2—H2 | 0.9300 | C14—O2 | 1.242 (4) |
C3—C4 | 1.362 (5) | C14—O1 | 1.244 (3) |
C3—H3 | 0.9300 | C15—N2 | 1.320 (4) |
C4—C5 | 1.382 (4) | C15—N3 | 1.333 (4) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.409 (3) | C16—N3 | 1.338 (4) |
C5—Cl2 | 1.733 (3) | C16—C17 | 1.367 (5) |
C6—N1 | 1.387 (3) | C16—H16 | 0.9300 |
C7—C8 | 1.382 (4) | C17—C18 | 1.388 (5) |
C7—C12 | 1.394 (4) | C17—H17 | 0.9300 |
C7—N1 | 1.426 (4) | C18—N2 | 1.330 (4) |
C8—C9 | 1.383 (5) | C18—H18 | 0.9300 |
C8—H8 | 0.9300 | Ag1—O2 | 2.279 (2) |
C9—C10 | 1.375 (6) | Ag1—O1i | 2.280 (2) |
C9—H9 | 0.9300 | Ag1—N2 | 2.381 (3) |
C10—C11 | 1.380 (5) | Ag1—N3ii | 2.412 (3) |
C10—H10 | 0.9300 | Ag1—Ag1i | 2.8931 (5) |
C11—C12 | 1.383 (4) | N1—H1 | 0.8600 |
C11—H11 | 0.9300 | ||
C2—C1—C6 | 123.5 (2) | C12—C13—H13B | 108.5 |
C2—C1—Cl1 | 118.0 (2) | C14—C13—H13B | 108.5 |
C6—C1—Cl1 | 118.5 (2) | H13A—C13—H13B | 107.5 |
C1—C2—C3 | 118.8 (3) | O2—C14—O1 | 125.6 (2) |
C1—C2—H2 | 120.6 | O2—C14—C13 | 118.5 (2) |
C3—C2—H2 | 120.6 | O1—C14—C13 | 115.9 (3) |
C4—C3—C2 | 120.1 (3) | N2—C15—N3 | 126.6 (3) |
C4—C3—H3 | 119.9 | N2—C15—H15 | 116.7 |
C2—C3—H3 | 119.9 | N3—C15—H15 | 116.7 |
C3—C4—C5 | 120.3 (3) | N3—C16—C17 | 122.1 (3) |
C3—C4—H4 | 119.9 | N3—C16—H16 | 118.9 |
C5—C4—H4 | 119.9 | C17—C16—H16 | 118.9 |
C4—C5—C6 | 122.0 (3) | C16—C17—C18 | 117.2 (3) |
C4—C5—Cl2 | 117.6 (2) | C16—C17—H17 | 121.4 |
C6—C5—Cl2 | 120.5 (2) | C18—C17—H17 | 121.4 |
N1—C6—C1 | 121.9 (2) | N2—C18—C17 | 121.4 (3) |
N1—C6—C5 | 122.8 (3) | N2—C18—H18 | 119.3 |
C1—C6—C5 | 115.2 (2) | C17—C18—H18 | 119.3 |
C8—C7—C12 | 120.6 (3) | O2—Ag1—O1i | 148.04 (10) |
C8—C7—N1 | 121.4 (3) | O2—Ag1—N2 | 99.71 (8) |
C12—C7—N1 | 118.1 (2) | O1i—Ag1—N2 | 89.58 (8) |
C7—C8—C9 | 120.5 (3) | O2—Ag1—N3ii | 97.48 (9) |
C7—C8—H8 | 119.8 | O1i—Ag1—N3ii | 108.69 (9) |
C9—C8—H8 | 119.8 | N2—Ag1—N3ii | 107.93 (9) |
C10—C9—C8 | 119.7 (3) | O2—Ag1—Ag1i | 81.70 (6) |
C10—C9—H9 | 120.2 | O1i—Ag1—Ag1i | 76.19 (6) |
C8—C9—H9 | 120.2 | N2—Ag1—Ag1i | 151.80 (6) |
C9—C10—C11 | 119.4 (3) | N3ii—Ag1—Ag1i | 99.73 (6) |
C9—C10—H10 | 120.3 | C6—N1—C7 | 123.3 (2) |
C11—C10—H10 | 120.3 | C6—N1—H1 | 118.4 |
C10—C11—C12 | 122.2 (3) | C7—N1—H1 | 118.4 |
C10—C11—H11 | 118.9 | C15—N2—C18 | 116.7 (3) |
C12—C11—H11 | 118.9 | C15—N2—Ag1 | 122.4 (2) |
C11—C12—C7 | 117.6 (3) | C18—N2—Ag1 | 120.8 (2) |
C11—C12—C13 | 120.6 (3) | C15—N3—C16 | 115.9 (3) |
C7—C12—C13 | 121.9 (2) | C15—N3—Ag1iii | 116.2 (2) |
C12—C13—C14 | 114.9 (2) | C16—N3—Ag1iii | 127.6 (2) |
C12—C13—H13A | 108.5 | C14—O1—Ag1i | 125.2 (2) |
C14—C13—H13A | 108.5 | C14—O2—Ag1 | 117.96 (17) |
C6—C1—C2—C3 | −0.1 (5) | N1—C7—C12—C13 | 2.6 (4) |
Cl1—C1—C2—C3 | −180.0 (3) | C11—C12—C13—C14 | −105.3 (3) |
C1—C2—C3—C4 | −2.0 (5) | C7—C12—C13—C14 | 75.6 (3) |
C2—C3—C4—C5 | 0.7 (5) | C12—C13—C14—O2 | −31.7 (4) |
C3—C4—C5—C6 | 2.7 (5) | C12—C13—C14—O1 | 149.1 (3) |
C3—C4—C5—Cl2 | −175.9 (3) | N3—C16—C17—C18 | −0.5 (4) |
C2—C1—C6—N1 | 179.0 (3) | C16—C17—C18—N2 | 0.5 (4) |
Cl1—C1—C6—N1 | −1.2 (4) | C1—C6—N1—C7 | 133.5 (3) |
C2—C1—C6—C5 | 3.2 (4) | C5—C6—N1—C7 | −51.1 (4) |
Cl1—C1—C6—C5 | −176.9 (2) | C8—C7—N1—C6 | −21.6 (4) |
C4—C5—C6—N1 | 179.8 (3) | C12—C7—N1—C6 | 157.8 (3) |
Cl2—C5—C6—N1 | −1.6 (4) | N3—C15—N2—C18 | −0.3 (4) |
C4—C5—C6—C1 | −4.5 (4) | N3—C15—N2—Ag1 | −176.8 (2) |
Cl2—C5—C6—C1 | 174.0 (2) | C17—C18—N2—C15 | −0.1 (4) |
C12—C7—C8—C9 | −1.8 (4) | C17—C18—N2—Ag1 | 176.4 (2) |
N1—C7—C8—C9 | 177.6 (3) | N2—C15—N3—C16 | 0.3 (4) |
C7—C8—C9—C10 | −0.2 (4) | N2—C15—N3—Ag1iii | 173.7 (2) |
C8—C9—C10—C11 | 1.0 (5) | C17—C16—N3—C15 | 0.2 (4) |
C9—C10—C11—C12 | 0.2 (5) | C17—C16—N3—Ag1iii | −172.4 (2) |
C10—C11—C12—C7 | −2.1 (4) | O2—C14—O1—Ag1i | 17.1 (4) |
C10—C11—C12—C13 | 178.7 (3) | C13—C14—O1—Ag1i | −163.8 (2) |
C8—C7—C12—C11 | 3.0 (4) | O1—C14—O2—Ag1 | 18.3 (4) |
N1—C7—C12—C11 | −176.5 (2) | C13—C14—O2—Ag1 | −160.8 (2) |
C8—C7—C12—C13 | −177.9 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, º)
Cg6 is the centroid of the [please define] ring.
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.43 | 2.971 (3) | 122 |
C16—H16···O1iv | 0.93 | 2.51 | 3.248 (4) | 136 |
C13—H13B···Cg6iii | 0.97 | 3.30 | 3.983 (3) | 129 |
Symmetry codes: (iii) x, −y+1/2, z−1/2; (iv) x, y, z−1.
References
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Ali, H. A. & Jabali, B. (2016). Polyhedron, 107, 97–106.
- Azócar, M., Muñoz, H., Levin, P., Dinamarca, N., Gomez, G., Ibanez, A., Garland, M. T. & Paez, M. A. (2013). Commun. Inorg. Synth. 1, 19–21.
- Caglar, S., Aydemir, I. E., Adıgüzel, E., Caglar, B., Demir, S. & Büyükgüngör, O. (2013). Inorg. Chim. Acta, 408, 131–138.
- Caglar, S., Aydemir, I. E., Cankaya, M., Kuzucu, M., Temel, E. & Büyükgüngör, O. (2014). J. Coord. Chem. 67, 969–985.
- Castellari, C., Feroci, G. & Ottani, S. (1999). Acta Cryst. C55, 907–910. [DOI] [PubMed]
- Dimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. P. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476–489. [DOI] [PubMed]
- Duffy, C. P., Elliott, C. J., O’Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O’Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250–1259. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Hamamci Alisir, S., Demir, S., Sariboga, B. & Buyukgungor, O. (2015). J. Coord. Chem. 68, 155–168.
- Iliescu, T., Baia, M. & Kiefer, W. (2004). Chem. Phys. 298, 167–174.
- Kim, K., Yoon, J., Kim, J. K., Baek, S. J., Eling, T. E., Lee, W. J., Ryu, J., Lee, J. G., Lee, J. & Yoo, J. (2004). Biochem. Biophys. Res. Commun. 325, 1298–1303. [DOI] [PubMed]
- Kourkoumelis, N., Demertzis, M. A., Kovala-Demertzi, D., Koutsodimou, A. & Moukarika, A. (2004). Spectrochim. Acta Part A, 60, 2253–2259. [DOI] [PubMed]
- Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.
- Njogu, E. M., Omondı, B. & Nyamorı, V. O. (2015). J. Coord. Chem. 68, 3389–3431.
- Nomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091–2097.
- Olson, L., Whitcomb, D. R., Rajeswaran, M., Blanton, T. N. & Stwertka, B. J. (2006). Chem. Mater. 18, 1667–1674.
- Pyykkö, P. (1997). Chem. Rev. 97, 597–636. [DOI] [PubMed]
- Ribeiro, G., Benadiba, M., Colquhoun, A. & de Oliveira Silva, D. (2008). Polyhedron, 27, 1131–1137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Wang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315–1329.
- Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.
- Wu, D. D. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2671–2678.
- Yam, V. W. & Lo, K. (1999). Chem. Soc. Rev. 28, 323–334.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
- Zhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385–2396. [DOI] [PubMed]
- Zhang, T., Huang, H. Q., Mei, H. X., Wang, D. F., Wang, X., Huang, R. & Zheng, L. (2015). J. Mol. Struct. 1100, 237–244.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016014730/zs2370sup3.tif
CCDC reference: 1500646
Additional supporting information: crystallographic information; 3D view; checkCIF report