Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Sep 27;72(Pt 10):1475–1479. doi: 10.1107/S2056989016014730

Crystal structure of a mixed-ligand silver(I) complex of the non-steroidal anti-inflammatory drug diclofenac and pyrimidine

Sevim Hamamci Alisir a,*, Necmi Dege b
PMCID: PMC5050780  PMID: 27746945

The coordination polymeric silver(I)–diclofenac complex including pyrimidine is based on a centrosymmetric carboxyl­ate O:O′-bridged dinuclear unit which is extended through N-atom donors of the pyrimidine ligand into a two-dimensional layered structure

Keywords: crystal structure, silver(I) complex, non-steroidal anti-inflammatory drug, diclofenac, two-dimensional coordination polymer

Abstract

In the title mixed-ligand silver(I) coordination polymeric complex with the non-steroidal anti-inflammatory drug diclofenac (C14H11Cl2NO2) (diclH) and pyrimidine (pym), namely poly[{μ2-2-[2-(2,6-di­chloro­anilino)phen­yl]acetato-κ2 O:O′}(μ2-pyrimidine-κ2 N 1:N 3)silver(I)], [Ag(C14H10Cl2NO2)(C4H4N2)]n or [Ag(μ-dicl)(μ-pym)]n, the very distorted tetra­hedral AgN2O2 coordination centres comprise two N-atom donors from bridging pym ligands [Ag—N = 2.381 (3) and 2.412 (3) Å] and two carboxyl­ate O-atom donors from dicl ligands [Ag—O = 2.279 (2) and 2.280 (2) Å], which bridge Ag atoms, giving a centrosymmetric dinuclear units with a short Ag⋯Ag separation [2.8931 (5) Å]. Within the units are short intra­ligand C—Cl⋯π(pym) inter­actions [3.6409 (15) Å]. The units are linked through the bridging N atoms of the pym ligand into a two-dimensional sheet–polymer structure lying parallel to (100) and stabilized by inter-ring π–π inter­actions between the pym ligands [CgCg = 3.4199 (17) Å]. Additional inter-unit C—H⋯O and C—H⋯Cg hydrogen-bonding inter­actions between the sheets give an overall three-dimensional structure.

Chemical context  

The design of coordination polymers based on silver(I) has been studied extensively in recent years because of their various structural topologies as well as photoluminescent properties and anti­microbial activity. These studies have shown that short Ag⋯Ag separations are one of the most important factors for the manifestation of such properties [Yam & Lo, 1999; Pyykkö et al., 1997; Wang & Cohen, 2009; Zhang et al., 2009, Njogu et al., 2015; Nomiya et al., 2000]. On the other hand, it is known that to construct extended coordination networks with polynuclear metal-based structures, ligands of various binding sites and shapes have to be taken into account. At this stage, confidence in accomplishing this goal is based upon the sophisticated selection and utilization of suitable multifunctional organic ligands with certain features, such as being a multiple donor and having versatile bonding modes or the ability to take part in hydrogen bonding. Aromatic carboxyl­ate derivatives have therefore been of inter­est in coordination and supra­molecular chemistry.

The chemical classes of non-steroidal anti-inflammatory drugs (NSAIDs) consist of salicylate derivatives, phenyl­alkanoic acids, oxicams, anthranilic acids, sulfonamides and furan­ones (Weder et al., 2002). These compounds are some of the most commonly used medications to reduce pain, and diclofenac (dicl), [2-(2,6-dicholoroanilino)phenyl­acetic acid], is a member of the group of phenyl­alkanoic acids. Additionally, NSAIDs are used as anti-inflammatories, anti­pyretics and anti­tumor drugs. (Kim et al., 2004; Ribeiro et al., 2008; Duffy et al., 1998). In previous publications, the crystal structures of metal complexes of diclofenac have been reported (Caglar et al., 2013, 2014; Ali & Jabali, 2016; Dimiza et al., 2011; Kovala-Demertzi et al., 1997; Castellari et al., 1999; Kourkoumelis et al., 2004) and in addition its mol­ecular structure has been characterized by various techniques (Iliescu et al., 2004). Based on the above-mentioned points, we report herein the synthesis and structural characterization of a new mixed-ligand silver(I) complex with dicl and pyrimidine (pym), namely [Ag(μ-dicl)(μ-pym)]n, (I).graphic file with name e-72-01475-scheme1.jpg

Structural commentary  

In (I), Ag1 atoms are four-coordinated by two carboxyl­ate oxygen atoms [O2 and O1i; symmetry code: (i) −x + 1, −y + 1, −z + 2] from separate dicl ligands and two nitro­gen atoms [N2 and N3ii; symmetry code: (ii) x, −y + Inline graphic, −z + Inline graphic] from two separate pym ligands (Fig. 1). The discrimination parameter for the AgN2O2 core {τ4 = [(360° − (α + β)]/141°}, where α and β are the largest angles around the metal atom) is 0.732 and indicates substantial deviation from ideal tetra­hedral geometry (Yang et al., 2007). The Ag—N bond lengths [2.381 (3) and 2.412 (3) Å] (Table 1) are similar to those found in the polymeric mixed-ligand silver(I) complex with 3,5-pyridinedi­carboxyl­ate (pydc) and (pym), [Ag4(μ-pydc)2(μ-pym)2]n [2.313 (5), 2.436 (5) and 2.490 (5) Å; Hamamci Alisir et al., 2015). The Ag—O bond lengths in (I) [2.279 (2) and 2.280 (2) Å] are longer than those in [Ag2(sal)2]n (sal = salicylate; 2.1887–2.2043 Å; Azócar et al., 2013) but shorter than those found in other silver carboxyl­ate complexes (Wu & Mak, 1995; Zhang et al., 2015; Olson et al., 2006). Each pair of silver(I) atoms in the title complex is bridged by the μ2-carboxyl­ato-O,O′ groups of dicl, forming centrosymmetric dinuclear [Ag2(μ-dicl)2] units (Fig. 2). Within the units are short intra­ligand C1—Cl1⋯π inter­actions to the pym ligands [3.6409 (15) Å]. The Ag1⋯Ag1i separation in the unit [2.8931 (5) Å] is significantly shorter than the sum of the van der Waals radii for two silver atoms (3.44 Å), indicating weak inter­actions between adjacent AgI ions, forming an [Ag2(COO)2] units. If coexisting strong argentophilic Ag1⋯Ag1i inter­actions are considered as coordinative, it could be reasoned that the coordination around Ag1 is slightly distorted trigonal–bipyramidal [the structural distortion index tau (τ) was calculated to be 0.06] (Addison et al., 1984).

Figure 1.

Figure 1

The mol­ecular configuration and atom-labelling scheme for the title complex, (I), with displacement ellipsoids drawn at the 30% level. For symmetry codes (i) and (ii), see Table 1.

Table 1. Selected geometric parameters (Å, °).

Ag1—O2 2.279 (2) Ag1—N3ii 2.412 (3)
Ag1—O1i 2.280 (2) Ag1—Ag1i 2.8931 (5)
Ag1—N2 2.381 (3)    
       
O2—Ag1—O1i 148.04 (10) O2—Ag1—Ag1i 81.70 (6)
O2—Ag1—N2 99.71 (8) O1i—Ag1—Ag1i 76.19 (6)
O1i—Ag1—N2 89.58 (8) N2—Ag1—Ag1i 151.80 (6)
O1i—Ag1—N3ii 108.69 (9) N3ii—Ag1—Ag1i 99.73 (6)
N2—Ag1—N3ii 107.93 (9)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the centrosymmetric caboxylate-bridged dinuclear [Ag2(μ-dicl)2] unit in (I). H atoms have been omitted.

As illustrated in Fig. 3, in the title complex, the pym ligand acts as a μ2-N,N1-bridging ligand between neighboring [Ag2(COO)2] units, leading to the formation of a two-dimensional coordination polymer, extending along (100) (Fig. 4). In other words, [Ag2(COO)2] units, which comprise eight-membered rings, can be defined as the nodes of the structure. Connection of the four different pym ligands to these nodes provides continuity of the structure (Fig. 4).

Figure 3.

Figure 3

A partial expansion of the dinuclear unit in (I) through the pym ligands, also showing the pym⋯pym π–π ring inter­actions.

Figure 4.

Figure 4

The layered structure of (I). H atoms and part of the dicl ligands have been omitted.

In the dicl ligand, the two benzene rings form a dihedral angle of 61.42 (5)°, the conformation of the ligand being stabilized by an intra­molecular N1—H1⋯O2carbox­yl hydrogen-bonding inter­action [2.971 (3) Å] (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.43 2.971 (3) 122
C16—H16⋯O1iii 0.93 2.51 3.248 (4) 136
C13—H13BCg6iv 0.97 3.30 3.983 (3) 129

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal, a C16—H16⋯O1iii hydrogen-bonding inter­action stabilizes the crystal packing (Table 2). In addition, there is a weak C13—H13⋯Cg6iv inter­action to a pym ring [3.983 Å] and a strong π–π stacking inter­action between aromatic rings of the pym ligands [Cg3⋯Cg3v = 3.4199 (17) Å; Cg3 is the centroid of the N2/C15/N3/C216–C18 ring; symmetry code (v): −x + 1, −y + 1, −z + 1], shown in Fig. 3. These inter­actions are significant for holding layers together in the solid state and generating an overall three-dimensional framework structure (Fig. 5).

Figure 5.

Figure 5

The packing of (I) in the unit cell viewed along the b axis.

Synthesis and crystallization  

All reactions were performed with commercially available reagents and used without further purification. Solid sodium 2-(2,6-dicholoroanilino)phenyl­acetate (Nadicl) (0.32 g, 1 mmol) and pyrimidine (0.08 g, 1 mol) were added to an aqueous solution (10 cm3) of AgNO3 (0.17 g, 1 mmol) with stirring. A white suspension with a white precipitate formed and the addition of aceto­nitrile (10 cm3) to this resulted in a clear solution which was left to stand for slow evaporation in darkness at room temperature. Single crystals of (I) suitable for X-ray analysis were obtained within a few days.

Spectroscopy  

The infrared spectrum was obtained using a Perkin Elmer Spectrum Two FTIR with a diamond Attenuated Total Reflectance attachment (ATR) in the frequency range 4000–600 cm−1. The sample was placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. The characteristic absorption bands of Nadicl and the title complex are listed in Table 3. The spectrum is deposited as a supplementary Fig. S1.

Table 3. Selected comparative IR spectral data for Nadicl and the dicl ligand in (I).

Frequencies in cm−1; w, weak; m, medium; s, strong; vs, very strong. Nadicl = sodium 2-(2,6-di­chloro­anilino)phenyl­acetate.

Assignment Nadicl (I)  
ν(NH) 3250 (m) 3307 (m)  
νar(CH) 3060 (vw) 3064–3029 (vw)  
νal(CH) 2980 (vw) 2956–2890 (vw)  
νas(COO) 1572 (vs) 1548 (vs)  
νs(COO) 1399 (w) 1365 (vs)  
ν(CCl) 768 (s) 768 (vs)  

The characteristic absorption band in the FT–IR spectra of the carboxyl­ate complexes is the asymmetric (υas) and symmetric (υs) vibrations of the carboxyl­ate group. The difference between the asymmetric and symmetric carboxyl­ate stretching [Δν = υas(COO) - υs(COO)] is often used to correlate the infrared spectra of metal carboxyl­ate structures. When Δν < 200 cm−1, the carboxyl­ate groups of the complexes can be considered bidentate (Azócar et al., 2013). The value of Δν is calculated as 183 cm−1 for 1. Based on the above-mentioned points, it is suggested that carboxyl­ate groups in the complex exhibit a bidentate coordination mode, as revealed by the structural analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All C-bound hydrogen atoms in (I) were included in calculated positions with C—H = 0.93 Å (aromatic) or 0.97 Å (methyl­ene) and allowed to ride, with U iso(H) = 1.2U eq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the refinement with U iso(H) = 1.2U eq(N).

Table 4. Experimental details.

Crystal data
Chemical formula [Ag(C14H10Cl2NO2)(C4H4N2)]
M r 483.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 18.5886 (4), 9.3071 (4), 10.6646 (8)
β (°) 105.644 (3)
V3) 1776.69 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.60 × 0.46 × 0.27
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.471, 0.693
No. of measured, independent and observed [I > 2σ(I)] reflections 13090, 4538, 3672
R int 0.088
(sin θ/λ)max−1) 0.675
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.095, 1.04
No. of reflections 4538
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −1.14

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370sup1.cif

e-72-01475-sup1.cif (447.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370Isup2.hkl

e-72-01475-Isup2.hkl (361.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016014730/zs2370sup3.tif

CCDC reference: 1500646

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ag(C14H10Cl2NO2)(C4H4N2)] F(000) = 960
Mr = 483.09 Dx = 1.806 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.5886 (4) Å Cell parameters from 13681 reflections
b = 9.3071 (4) Å θ = 2.0–29.1°
c = 10.6646 (8) Å µ = 1.45 mm1
β = 105.644 (3)° T = 293 K
V = 1776.69 (16) Å3 Prism, colorless
Z = 4 0.60 × 0.46 × 0.27 mm

Data collection

Stoe IPDS2 diffractometer 3672 reflections with I > 2σ(I)
ω–scan rotation method Rint = 0.088
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) θmax = 28.7°, θmin = 2.3°
Tmin = 0.471, Tmax = 0.693 h = −24→24
13090 measured reflections k = −12→12
4538 independent reflections l = −14→14

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0488P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.57 e Å3
4538 reflections Δρmin = −1.14 e Å3
236 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0206 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.17222 (14) 0.3200 (3) 0.6246 (3) 0.0419 (6)
C2 0.12206 (16) 0.2364 (3) 0.5353 (3) 0.0496 (7)
H2 0.1387 0.1695 0.4847 0.060*
C3 0.04629 (16) 0.2541 (4) 0.5223 (4) 0.0546 (8)
H3 0.0116 0.2009 0.4607 0.065*
C4 0.02263 (15) 0.3495 (4) 0.5995 (3) 0.0505 (7)
H4 −0.0282 0.3603 0.5912 0.061*
C5 0.07381 (14) 0.4302 (3) 0.6904 (3) 0.0406 (6)
C6 0.15110 (13) 0.4220 (3) 0.7029 (3) 0.0381 (5)
C7 0.19762 (12) 0.6542 (3) 0.8068 (3) 0.0377 (5)
C8 0.15520 (14) 0.7377 (3) 0.7067 (3) 0.0451 (6)
H8 0.1312 0.6953 0.6275 0.054*
C9 0.14820 (16) 0.8839 (4) 0.7235 (4) 0.0529 (8)
H9 0.1197 0.9397 0.6558 0.063*
C10 0.18355 (17) 0.9463 (3) 0.8408 (4) 0.0573 (9)
H10 0.1785 1.0443 0.8535 0.069*
C11 0.22657 (15) 0.8624 (3) 0.9396 (4) 0.0501 (7)
H11 0.2502 0.9054 1.0187 0.060*
C12 0.23575 (12) 0.7165 (3) 0.9249 (3) 0.0391 (6)
C13 0.28437 (13) 0.6294 (4) 1.0340 (3) 0.0437 (6)
H13A 0.2575 0.5429 1.0448 0.052*
H13B 0.2930 0.6843 1.1140 0.052*
C14 0.36042 (13) 0.5857 (3) 1.0147 (3) 0.0367 (5)
C15 0.44153 (16) 0.3069 (3) 0.5812 (3) 0.0444 (6)
H15 0.4577 0.2251 0.6310 0.053*
C16 0.40626 (15) 0.4123 (3) 0.3828 (3) 0.0461 (6)
H16 0.3968 0.4080 0.2926 0.055*
C17 0.39630 (16) 0.5399 (4) 0.4394 (3) 0.0489 (7)
H17 0.3807 0.6220 0.3899 0.059*
C18 0.41040 (15) 0.5417 (3) 0.5740 (3) 0.0461 (6)
H18 0.4038 0.6266 0.6154 0.055*
Ag1 0.46373 (2) 0.43353 (3) 0.87652 (2) 0.04354 (10)
Cl1 0.26694 (4) 0.29612 (9) 0.63922 (10) 0.0610 (2)
Cl2 0.03984 (4) 0.54045 (9) 0.79226 (9) 0.05280 (19)
N1 0.20327 (12) 0.5025 (3) 0.7931 (3) 0.0443 (5)
H1 0.2409 0.4588 0.8434 0.053*
N2 0.43318 (12) 0.4245 (3) 0.6450 (2) 0.0425 (5)
N3 0.42916 (13) 0.2935 (3) 0.4527 (2) 0.0457 (5)
O1 0.41252 (11) 0.5735 (3) 1.1157 (2) 0.0586 (6)
O2 0.36494 (11) 0.5641 (3) 0.9022 (2) 0.0590 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0374 (11) 0.0372 (13) 0.0497 (15) 0.0009 (10) 0.0092 (11) 0.0018 (13)
C2 0.0522 (15) 0.0425 (15) 0.0518 (17) −0.0023 (12) 0.0097 (13) −0.0065 (14)
C3 0.0458 (14) 0.0469 (16) 0.063 (2) −0.0076 (12) 0.0001 (13) −0.0057 (16)
C4 0.0350 (12) 0.0496 (17) 0.062 (2) −0.0056 (11) 0.0045 (12) 0.0027 (15)
C5 0.0362 (11) 0.0378 (13) 0.0472 (15) 0.0012 (10) 0.0104 (11) 0.0046 (12)
C6 0.0341 (10) 0.0344 (12) 0.0430 (14) 0.0025 (9) 0.0055 (10) 0.0047 (11)
C7 0.0293 (10) 0.0376 (13) 0.0472 (14) 0.0020 (9) 0.0119 (10) 0.0004 (12)
C8 0.0339 (11) 0.0495 (15) 0.0504 (16) 0.0006 (11) 0.0090 (11) 0.0030 (14)
C9 0.0402 (13) 0.0480 (16) 0.072 (2) 0.0062 (12) 0.0182 (14) 0.0166 (17)
C10 0.0468 (15) 0.0384 (15) 0.089 (3) 0.0036 (12) 0.0230 (16) −0.0026 (17)
C11 0.0383 (12) 0.0468 (16) 0.067 (2) −0.0010 (11) 0.0167 (13) −0.0129 (15)
C12 0.0267 (10) 0.0422 (14) 0.0502 (15) 0.0005 (9) 0.0135 (10) −0.0046 (12)
C13 0.0319 (11) 0.0561 (17) 0.0432 (15) 0.0005 (11) 0.0102 (10) −0.0061 (14)
C14 0.0303 (10) 0.0338 (12) 0.0445 (14) 0.0008 (9) 0.0074 (10) −0.0019 (11)
C15 0.0539 (14) 0.0419 (14) 0.0395 (14) 0.0020 (12) 0.0159 (12) 0.0026 (13)
C16 0.0441 (13) 0.0577 (18) 0.0356 (13) −0.0024 (12) 0.0094 (11) 0.0018 (13)
C17 0.0451 (13) 0.0503 (16) 0.0493 (16) 0.0086 (12) 0.0096 (12) 0.0110 (14)
C18 0.0404 (12) 0.0432 (15) 0.0522 (17) 0.0056 (11) 0.0084 (12) −0.0035 (13)
Ag1 0.04020 (13) 0.05477 (15) 0.03712 (13) 0.00513 (8) 0.01297 (8) −0.00042 (10)
Cl1 0.0401 (3) 0.0555 (4) 0.0877 (6) 0.0068 (3) 0.0176 (3) −0.0087 (5)
Cl2 0.0458 (3) 0.0534 (4) 0.0647 (5) 0.0013 (3) 0.0243 (3) −0.0020 (4)
N1 0.0344 (10) 0.0402 (12) 0.0504 (14) 0.0065 (9) −0.0019 (9) −0.0026 (11)
N2 0.0401 (10) 0.0500 (14) 0.0375 (11) 0.0031 (9) 0.0104 (9) −0.0026 (11)
N3 0.0534 (13) 0.0460 (13) 0.0392 (12) −0.0014 (10) 0.0149 (10) −0.0015 (11)
O1 0.0334 (9) 0.0967 (19) 0.0426 (11) 0.0109 (10) 0.0049 (8) 0.0071 (12)
O2 0.0412 (10) 0.0880 (18) 0.0456 (12) 0.0186 (10) 0.0080 (9) −0.0133 (12)

Geometric parameters (Å, º)

C1—C2 1.379 (4) C12—C13 1.504 (4)
C1—C6 1.390 (4) C13—C14 1.537 (3)
C1—Cl1 1.739 (3) C13—H13A 0.9700
C2—C3 1.387 (4) C13—H13B 0.9700
C2—H2 0.9300 C14—O2 1.242 (4)
C3—C4 1.362 (5) C14—O1 1.244 (3)
C3—H3 0.9300 C15—N2 1.320 (4)
C4—C5 1.382 (4) C15—N3 1.333 (4)
C4—H4 0.9300 C15—H15 0.9300
C5—C6 1.409 (3) C16—N3 1.338 (4)
C5—Cl2 1.733 (3) C16—C17 1.367 (5)
C6—N1 1.387 (3) C16—H16 0.9300
C7—C8 1.382 (4) C17—C18 1.388 (5)
C7—C12 1.394 (4) C17—H17 0.9300
C7—N1 1.426 (4) C18—N2 1.330 (4)
C8—C9 1.383 (5) C18—H18 0.9300
C8—H8 0.9300 Ag1—O2 2.279 (2)
C9—C10 1.375 (6) Ag1—O1i 2.280 (2)
C9—H9 0.9300 Ag1—N2 2.381 (3)
C10—C11 1.380 (5) Ag1—N3ii 2.412 (3)
C10—H10 0.9300 Ag1—Ag1i 2.8931 (5)
C11—C12 1.383 (4) N1—H1 0.8600
C11—H11 0.9300
C2—C1—C6 123.5 (2) C12—C13—H13B 108.5
C2—C1—Cl1 118.0 (2) C14—C13—H13B 108.5
C6—C1—Cl1 118.5 (2) H13A—C13—H13B 107.5
C1—C2—C3 118.8 (3) O2—C14—O1 125.6 (2)
C1—C2—H2 120.6 O2—C14—C13 118.5 (2)
C3—C2—H2 120.6 O1—C14—C13 115.9 (3)
C4—C3—C2 120.1 (3) N2—C15—N3 126.6 (3)
C4—C3—H3 119.9 N2—C15—H15 116.7
C2—C3—H3 119.9 N3—C15—H15 116.7
C3—C4—C5 120.3 (3) N3—C16—C17 122.1 (3)
C3—C4—H4 119.9 N3—C16—H16 118.9
C5—C4—H4 119.9 C17—C16—H16 118.9
C4—C5—C6 122.0 (3) C16—C17—C18 117.2 (3)
C4—C5—Cl2 117.6 (2) C16—C17—H17 121.4
C6—C5—Cl2 120.5 (2) C18—C17—H17 121.4
N1—C6—C1 121.9 (2) N2—C18—C17 121.4 (3)
N1—C6—C5 122.8 (3) N2—C18—H18 119.3
C1—C6—C5 115.2 (2) C17—C18—H18 119.3
C8—C7—C12 120.6 (3) O2—Ag1—O1i 148.04 (10)
C8—C7—N1 121.4 (3) O2—Ag1—N2 99.71 (8)
C12—C7—N1 118.1 (2) O1i—Ag1—N2 89.58 (8)
C7—C8—C9 120.5 (3) O2—Ag1—N3ii 97.48 (9)
C7—C8—H8 119.8 O1i—Ag1—N3ii 108.69 (9)
C9—C8—H8 119.8 N2—Ag1—N3ii 107.93 (9)
C10—C9—C8 119.7 (3) O2—Ag1—Ag1i 81.70 (6)
C10—C9—H9 120.2 O1i—Ag1—Ag1i 76.19 (6)
C8—C9—H9 120.2 N2—Ag1—Ag1i 151.80 (6)
C9—C10—C11 119.4 (3) N3ii—Ag1—Ag1i 99.73 (6)
C9—C10—H10 120.3 C6—N1—C7 123.3 (2)
C11—C10—H10 120.3 C6—N1—H1 118.4
C10—C11—C12 122.2 (3) C7—N1—H1 118.4
C10—C11—H11 118.9 C15—N2—C18 116.7 (3)
C12—C11—H11 118.9 C15—N2—Ag1 122.4 (2)
C11—C12—C7 117.6 (3) C18—N2—Ag1 120.8 (2)
C11—C12—C13 120.6 (3) C15—N3—C16 115.9 (3)
C7—C12—C13 121.9 (2) C15—N3—Ag1iii 116.2 (2)
C12—C13—C14 114.9 (2) C16—N3—Ag1iii 127.6 (2)
C12—C13—H13A 108.5 C14—O1—Ag1i 125.2 (2)
C14—C13—H13A 108.5 C14—O2—Ag1 117.96 (17)
C6—C1—C2—C3 −0.1 (5) N1—C7—C12—C13 2.6 (4)
Cl1—C1—C2—C3 −180.0 (3) C11—C12—C13—C14 −105.3 (3)
C1—C2—C3—C4 −2.0 (5) C7—C12—C13—C14 75.6 (3)
C2—C3—C4—C5 0.7 (5) C12—C13—C14—O2 −31.7 (4)
C3—C4—C5—C6 2.7 (5) C12—C13—C14—O1 149.1 (3)
C3—C4—C5—Cl2 −175.9 (3) N3—C16—C17—C18 −0.5 (4)
C2—C1—C6—N1 179.0 (3) C16—C17—C18—N2 0.5 (4)
Cl1—C1—C6—N1 −1.2 (4) C1—C6—N1—C7 133.5 (3)
C2—C1—C6—C5 3.2 (4) C5—C6—N1—C7 −51.1 (4)
Cl1—C1—C6—C5 −176.9 (2) C8—C7—N1—C6 −21.6 (4)
C4—C5—C6—N1 179.8 (3) C12—C7—N1—C6 157.8 (3)
Cl2—C5—C6—N1 −1.6 (4) N3—C15—N2—C18 −0.3 (4)
C4—C5—C6—C1 −4.5 (4) N3—C15—N2—Ag1 −176.8 (2)
Cl2—C5—C6—C1 174.0 (2) C17—C18—N2—C15 −0.1 (4)
C12—C7—C8—C9 −1.8 (4) C17—C18—N2—Ag1 176.4 (2)
N1—C7—C8—C9 177.6 (3) N2—C15—N3—C16 0.3 (4)
C7—C8—C9—C10 −0.2 (4) N2—C15—N3—Ag1iii 173.7 (2)
C8—C9—C10—C11 1.0 (5) C17—C16—N3—C15 0.2 (4)
C9—C10—C11—C12 0.2 (5) C17—C16—N3—Ag1iii −172.4 (2)
C10—C11—C12—C7 −2.1 (4) O2—C14—O1—Ag1i 17.1 (4)
C10—C11—C12—C13 178.7 (3) C13—C14—O1—Ag1i −163.8 (2)
C8—C7—C12—C11 3.0 (4) O1—C14—O2—Ag1 18.3 (4)
N1—C7—C12—C11 −176.5 (2) C13—C14—O2—Ag1 −160.8 (2)
C8—C7—C12—C13 −177.9 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

Cg6 is the centroid of the [please define] ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.43 2.971 (3) 122
C16—H16···O1iv 0.93 2.51 3.248 (4) 136
C13—H13B···Cg6iii 0.97 3.30 3.983 (3) 129

Symmetry codes: (iii) x, −y+1/2, z−1/2; (iv) x, y, z−1.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Ali, H. A. & Jabali, B. (2016). Polyhedron, 107, 97–106.
  3. Azócar, M., Muñoz, H., Levin, P., Dinamarca, N., Gomez, G., Ibanez, A., Garland, M. T. & Paez, M. A. (2013). Commun. Inorg. Synth. 1, 19–21.
  4. Caglar, S., Aydemir, I. E., Adıgüzel, E., Caglar, B., Demir, S. & Büyükgüngör, O. (2013). Inorg. Chim. Acta, 408, 131–138.
  5. Caglar, S., Aydemir, I. E., Cankaya, M., Kuzucu, M., Temel, E. & Büyükgüngör, O. (2014). J. Coord. Chem. 67, 969–985.
  6. Castellari, C., Feroci, G. & Ottani, S. (1999). Acta Cryst. C55, 907–910. [DOI] [PubMed]
  7. Dimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. P. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476–489. [DOI] [PubMed]
  8. Duffy, C. P., Elliott, C. J., O’Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O’Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250–1259. [DOI] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Hamamci Alisir, S., Demir, S., Sariboga, B. & Buyukgungor, O. (2015). J. Coord. Chem. 68, 155–168.
  11. Iliescu, T., Baia, M. & Kiefer, W. (2004). Chem. Phys. 298, 167–174.
  12. Kim, K., Yoon, J., Kim, J. K., Baek, S. J., Eling, T. E., Lee, W. J., Ryu, J., Lee, J. G., Lee, J. & Yoo, J. (2004). Biochem. Biophys. Res. Commun. 325, 1298–1303. [DOI] [PubMed]
  13. Kourkoumelis, N., Demertzis, M. A., Kovala-Demertzi, D., Koutsodimou, A. & Moukarika, A. (2004). Spectrochim. Acta Part A, 60, 2253–2259. [DOI] [PubMed]
  14. Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.
  15. Njogu, E. M., Omondı, B. & Nyamorı, V. O. (2015). J. Coord. Chem. 68, 3389–3431.
  16. Nomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091–2097.
  17. Olson, L., Whitcomb, D. R., Rajeswaran, M., Blanton, T. N. & Stwertka, B. J. (2006). Chem. Mater. 18, 1667–1674.
  18. Pyykkö, P. (1997). Chem. Rev. 97, 597–636. [DOI] [PubMed]
  19. Ribeiro, G., Benadiba, M., Colquhoun, A. & de Oliveira Silva, D. (2008). Polyhedron, 27, 1131–1137.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  23. Wang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315–1329.
  24. Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.
  25. Wu, D. D. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2671–2678.
  26. Yam, V. W. & Lo, K. (1999). Chem. Soc. Rev. 28, 323–334.
  27. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  28. Zhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385–2396. [DOI] [PubMed]
  29. Zhang, T., Huang, H. Q., Mei, H. X., Wang, D. F., Wang, X., Huang, R. & Zheng, L. (2015). J. Mol. Struct. 1100, 237–244.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370sup1.cif

e-72-01475-sup1.cif (447.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016014730/zs2370Isup2.hkl

e-72-01475-Isup2.hkl (361.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016014730/zs2370sup3.tif

CCDC reference: 1500646

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES