Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 1;89(23):11249–11253. doi: 10.1073/pnas.89.23.11249

Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light.

M M LaVail 1, K Unoki 1, D Yasumura 1, M T Matthes 1, G D Yancopoulos 1, R H Steinberg 1
PMCID: PMC50527  PMID: 1454803

Abstract

Recent demonstrations of survival-promoting activity by neurotrophic agents in diverse neuronal systems have raised the possibility of pharmacological therapy for inherited and degenerative disorders of the central nervous system. We have shown previously that, in the retina, basic fibroblast growth factor delays photoreceptor degeneration in Royal College of Surgeons rats with inherited retinal dystrophy and that the growth factor reduces or prevents the rapid photoreceptor degeneration produced by constant light in the rat. This light-damage model now provides an efficient way to assess quantitatively the survival-promoting activity in vivo of a number of growth factors and other molecules. We report here that photoreceptors can be significantly protected from the damaging effects of light by intravitreal injection of eight different growth factors, cytokines, and neurotrophins that typically act through several distinct receptor families. In addition to basic fibroblast growth factor, those factors providing a high degree of photoreceptor rescue include brain-derived neurotrophic factor, ciliary neurotrophic factor, interleukin 1 beta, and acidic fibroblast growth factor; those with less activity include neurotrophin 3, insulin-like growth factor II, and tumor necrosis factor alpha; those showing little or no protective effect are nerve growth factor, epidermal growth factor, platelet-derived growth factor, insulin, insulin-like growth factor I, heparin, and laminin. Although we used at least one relatively high concentration of each agent (the highest available), it is still possible that other concentrations or factor combinations might be more protective. Injecting heparin along with acidic fibroblast growth factor or basic fibroblast growth factor further enhanced the degree of photoreceptor survival and also suppressed the increased incidence of macrophages produced by either factor, especially basic fibroblast growth factor. These results now provide the impetus for determining the normal function in the retina, mechanism(s) of rescue, and therapeutic potential in human eye diseases for each agent.

Full text

PDF
11249

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler R., Landa K. B., Manthorpe M., Varon S. Cholinergic neuronotrophic factors: intraocular distribution of trophic activity for ciliary neurons. Science. 1979 Jun 29;204(4400):1434–1436. doi: 10.1126/science.451576. [DOI] [PubMed] [Google Scholar]
  2. Arakawa Y., Sendtner M., Thoenen H. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci. 1990 Nov;10(11):3507–3515. doi: 10.1523/JNEUROSCI.10-11-03507.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbe M. F., Tytell M., Gower D. J., Welch W. J. Hyperthermia protects against light damage in the rat retina. Science. 1988 Sep 30;241(4874):1817–1820. doi: 10.1126/science.3175623. [DOI] [PubMed] [Google Scholar]
  4. Burke J. M. Stimulation of DNA synthesis in human and bovine RPE by peptide growth factors: the response to TNF-alpha and EGF is dependent upon culture density. Curr Eye Res. 1989 Dec;8(12):1279–1286. doi: 10.3109/02713688909013907. [DOI] [PubMed] [Google Scholar]
  5. Campochiaro P. A., Sugg R., Grotendorst G., Hjelmeland L. M. Retinal pigment epithelial cells produce PDGF-like proteins and secrete them into their media. Exp Eye Res. 1989 Aug;49(2):217–227. doi: 10.1016/0014-4835(89)90092-4. [DOI] [PubMed] [Google Scholar]
  6. Carmignoto G., Maffei L., Candeo P., Canella R., Comelli C. Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. J Neurosci. 1989 Apr;9(4):1263–1272. doi: 10.1523/JNEUROSCI.09-04-01263.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis S., Aldrich T. H., Valenzuela D. M., Wong V. V., Furth M. E., Squinto S. P., Yancopoulos G. D. The receptor for ciliary neurotrophic factor. Science. 1991 Jul 5;253(5015):59–63. doi: 10.1126/science.1648265. [DOI] [PubMed] [Google Scholar]
  8. Dionne C. A., Jaye M., Schlessinger J. Structural diversity and binding of FGF receptors. Ann N Y Acad Sci. 1991;638:161–166. doi: 10.1111/j.1749-6632.1991.tb49026.x. [DOI] [PubMed] [Google Scholar]
  9. Edgar D., Timpl R., Thoenen H. The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 1984 Jul;3(7):1463–1468. doi: 10.1002/j.1460-2075.1984.tb01997.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edward D. P., Lam T. T., Shahinfar S., Li J., Tso M. O. Amelioration of light-induced retinal degeneration by a calcium overload blocker. Flunarizine. Arch Ophthalmol. 1991 Apr;109(4):554–562. doi: 10.1001/archopht.1991.01080040122042. [DOI] [PubMed] [Google Scholar]
  11. Faktorovich E. G., Steinberg R. H., Yasumura D., Matthes M. T., LaVail M. M. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci. 1992 Sep;12(9):3554–3567. doi: 10.1523/JNEUROSCI.12-09-03554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faktorovich E. G., Steinberg R. H., Yasumura D., Matthes M. T., LaVail M. M. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature. 1990 Sep 6;347(6288):83–86. doi: 10.1038/347083a0. [DOI] [PubMed] [Google Scholar]
  13. Grignolo A., Orzalesi N., Castellazzo R., Vittone P. Retinal damage by visible light in albino rats. An electron microscope study. Ophthalmologica. 1969;157(1):43–59. doi: 10.1159/000305619. [DOI] [PubMed] [Google Scholar]
  14. Hageman G. S., Kirchoff-Rempe M. A., Lewis G. P., Fisher S. K., Anderson D. H. Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6706–6710. doi: 10.1073/pnas.88.15.6706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hewitt A. T., Lindsey J. D., Carbott D., Adler R. Photoreceptor survival-promoting activity in interphotoreceptor matrix preparations: characterization and partial purification. Exp Eye Res. 1990 Jan;50(1):79–88. doi: 10.1016/0014-4835(90)90013-k. [DOI] [PubMed] [Google Scholar]
  16. Hicks D., Courtois Y. Acidic fibroblast growth factor stimulates opsin levels in retinal photoreceptor cells in vitro. FEBS Lett. 1988 Jul 18;234(2):475–479. doi: 10.1016/0014-5793(88)80141-8. [DOI] [PubMed] [Google Scholar]
  17. Hohn A., Leibrock J., Bailey K., Barde Y. A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990 Mar 22;344(6264):339–341. doi: 10.1038/344339a0. [DOI] [PubMed] [Google Scholar]
  18. Hyman C., Hofer M., Barde Y. A., Juhasz M., Yancopoulos G. D., Squinto S. P., Lindsay R. M. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991 Mar 21;350(6315):230–232. doi: 10.1038/350230a0. [DOI] [PubMed] [Google Scholar]
  19. Ip N. Y., Li Y. P., van de Stadt I., Panayotatos N., Alderson R. F., Lindsay R. M. Ciliary neurotrophic factor enhances neuronal survival in embryonic rat hippocampal cultures. J Neurosci. 1991 Oct;11(10):3124–3134. doi: 10.1523/JNEUROSCI.11-10-03124.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson J. E., Barde Y. A., Schwab M., Thoenen H. Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci. 1986 Oct;6(10):3031–3038. doi: 10.1523/JNEUROSCI.06-10-03031.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kalcheim C., Barde Y. A., Thoenen H., Le Douarin N. M. In vivo effect of brain-derived neurotrophic factor on the survival of developing dorsal root ganglion cells. EMBO J. 1987 Oct;6(10):2871–2873. doi: 10.1002/j.1460-2075.1987.tb02589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuwabara T., Gorn R. A. Retinal damage by visible light. An electron microscopic study. Arch Ophthalmol. 1968 Jan;79(1):69–78. doi: 10.1001/archopht.1968.03850040071019. [DOI] [PubMed] [Google Scholar]
  23. LaVail M. M., Faktorovich E. G., Hepler J. M., Pearson K. L., Yasumura D., Matthes M. T., Steinberg R. H. Basic fibroblast growth factor protects photoreceptors from light-induced degeneration in albino rats. Ann N Y Acad Sci. 1991;638:341–347. doi: 10.1111/j.1749-6632.1991.tb49044.x. [DOI] [PubMed] [Google Scholar]
  24. LaVail M. M., Gorrin G. M., Repaci M. A., Thomas L. A., Ginsberg H. M. Genetic regulation of light damage to photoreceptors. Invest Ophthalmol Vis Sci. 1987 Jul;28(7):1043–1048. [PubMed] [Google Scholar]
  25. Lehwalder D., Jeffrey P. L., Unsicker K. Survival of purified embryonic chick retinal ganglion cells in the presence of neurotrophic factors. J Neurosci Res. 1989 Oct;24(2):329–337. doi: 10.1002/jnr.490240225. [DOI] [PubMed] [Google Scholar]
  26. Leschey K. H., Hackett S. F., Singer J. H., Campochiaro P. A. Growth factor responsiveness of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1990 May;31(5):839–846. [PubMed] [Google Scholar]
  27. Lipton S. A., Wagner J. A., Madison R. D., D'Amore P. A. Acidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2388–2392. doi: 10.1073/pnas.85.7.2388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maisonpierre P. C., Belluscio L., Squinto S., Ip N. Y., Furth M. E., Lindsay R. M., Yancopoulos G. D. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990 Mar 23;247(4949 Pt 1):1446–1451. doi: 10.1126/science.247.4949.1446. [DOI] [PubMed] [Google Scholar]
  29. Martiney J. A., Litwak M., Berman J. W., Arezzo J. C., Brosnan C. F. Pathophysiologic effect of interleukin-1b in the rabbit retina. Am J Pathol. 1990 Dec;137(6):1411–1423. [PMC free article] [PubMed] [Google Scholar]
  30. Mascarelli F., Tassin J., Courtois Y. Effect of FGFs on adult bovine Muller cells: proliferation, binding and internalization. Growth Factors. 1991;4(2):81–95. doi: 10.3109/08977199109000260. [DOI] [PubMed] [Google Scholar]
  31. Meakin S. O., Shooter E. M. The nerve growth factor family of receptors. Trends Neurosci. 1992 Sep;15(9):323–331. doi: 10.1016/0166-2236(92)90047-c. [DOI] [PubMed] [Google Scholar]
  32. O'Steen W. K., Karcioglu Z. A. Phagocytosis in the light-damaged albino rat eye: light and electron microscopic study. Am J Anat. 1974 Apr;139(4):503–517. doi: 10.1002/aja.1001390404. [DOI] [PubMed] [Google Scholar]
  33. Oppenheim R. W., Prevette D., Yin Q. W., Collins F., MacDonald J. Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science. 1991 Mar 29;251(5001):1616–1618. doi: 10.1126/science.2011743. [DOI] [PubMed] [Google Scholar]
  34. Otto D., Frotscher M., Unsicker K. Basic fibroblast growth factor and nerve growth factor administered in gel foam rescue medial septal neurons after fimbria fornix transection. J Neurosci Res. 1989 Jan;22(1):83–91. doi: 10.1002/jnr.490220111. [DOI] [PubMed] [Google Scholar]
  35. Plouët J., Mascarelli F., Loret M. D., Faure J. P., Courtois Y. Regulation of eye derived growth factor binding to membranes by light, ATP or GTP in photoreceptor outer segments. EMBO J. 1988 Feb;7(2):373–376. doi: 10.1002/j.1460-2075.1988.tb02823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rappolee D. A., Werb Z. Macrophage-derived growth factors. Curr Top Microbiol Immunol. 1992;181:87–140. doi: 10.1007/978-3-642-77377-8_4. [DOI] [PubMed] [Google Scholar]
  37. Roberge F. G., Caspi R. R., Nussenblatt R. B. Glial retinal Müller cells produce IL-1 activity and have a dual effect on autoimmune T helper lymphocytes. Antigen presentation manifested after removal of suppressive activity. J Immunol. 1988 Apr 1;140(7):2193–2196. [PubMed] [Google Scholar]
  38. Rodriguez-Tébar A., Jeffrey P. L., Thoenen H., Barde Y. A. The survival of chick retinal ganglion cells in response to brain-derived neurotrophic factor depends on their embryonic age. Dev Biol. 1989 Dec;136(2):296–303. doi: 10.1016/0012-1606(89)90256-x. [DOI] [PubMed] [Google Scholar]
  39. Schweigerer L., Malerstein B., Neufeld G., Gospodarowicz D. Basic fibroblast growth factor is synthesized in cultured retinal pigment epithelial cells. Biochem Biophys Res Commun. 1987 Mar 30;143(3):934–940. doi: 10.1016/0006-291x(87)90340-8. [DOI] [PubMed] [Google Scholar]
  40. Sendtner M., Kreutzberg G. W., Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature. 1990 May 31;345(6274):440–441. doi: 10.1038/345440a0. [DOI] [PubMed] [Google Scholar]
  41. Sievers J., Hausmann B., Unsicker K., Berry M. Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci Lett. 1987 May 6;76(2):157–162. doi: 10.1016/0304-3940(87)90708-7. [DOI] [PubMed] [Google Scholar]
  42. Spina M. B., Squinto S. P., Miller J., Lindsay R. M., Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem. 1992 Jul;59(1):99–106. doi: 10.1111/j.1471-4159.1992.tb08880.x. [DOI] [PubMed] [Google Scholar]
  43. Steinberg R. H. Research update: report from a workshop on cell biology of retinal detachment. Exp Eye Res. 1986 Nov;43(5):695–706. doi: 10.1016/s0014-4835(86)80001-x. [DOI] [PubMed] [Google Scholar]
  44. Sternfeld M. D., Robertson J. E., Shipley G. D., Tsai J., Rosenbaum J. T. Cultured human retinal pigment epithelial cells express basic fibroblast growth factor and its receptor. Curr Eye Res. 1989 Oct;8(10):1029–1037. doi: 10.3109/02713688908997395. [DOI] [PubMed] [Google Scholar]
  45. Tuszynski M. H., U H. S., Amaral D. G., Gage F. H. Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci. 1990 Nov;10(11):3604–3614. doi: 10.1523/JNEUROSCI.10-11-03604.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Waldbillig R. J., Pfeffer B. A., Schoen T. J., Adler A. A., Shen-Orr Z., Scavo L., LeRoith D., Chader G. J. Evidence for an insulin-like growth factor autocrine-paracrine system in the retinal photoreceptor-pigment epithelial cell complex. J Neurochem. 1991 Nov;57(5):1522–1533. doi: 10.1111/j.1471-4159.1991.tb06347.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES