Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1996 Jul;80(7):663–668. doi: 10.1136/bjo.80.7.663

Corneal epithelial recovery following photorefractive keratectomy.

S W Chang 1, F R Hu 1, P K Hou 1
PMCID: PMC505565  PMID: 8795383

Abstract

AIMS: To further understand the morphological and functional recovery of corneal epithelium following excimer laser photorefractive keratectomy (PRK). METHODS: The right eyes (group 1) of 15 male, New Zealand white rabbits weighing 2-3 kg underwent PRK. The left eye of each rabbit (group 2) underwent simple mechanical de-epithelialisation and were examined as treated controls. Both eyes of another eight rabbits (group 3) served as untreated controls. All eyes underwent a corneal epithelial permeability study by fluorophotometry at 2, 4, and 8 weeks after surgery. Five animals in groups 1 and 2 were sacrificed at 9, 10, and 12 weeks after surgery. The animals in group 3 were sacrificed at the end of the 12 week experimental period. Both eyes of each sacrificed animal were enucleated immediately and processed for both haematoxylin and eosin stain and electron microscopic study. The electron micrograph was magnified to 14,000x and the extent of hemidesmosome formation was quantified and analysed. RESULTS: The corneal epithelial barrier to sodium fluorescein was subnormal and returned to a normal barrier state 4 weeks after PRK in group 1 whereas it was normal in group 2 throughout the examination period. The extent of hemidesmosome formation was abundant yet subnormal in both groups 1 and 2 up to 12 weeks, when compared with that in group 3. CONCLUSION: The corneal epithelium regained its functional barrier 4 weeks after PRK in rabbits while the extent of hemidesmosome formation was still subnormal 12 weeks after mechanical de-epithelialisation, with or without PRK.

Full text

PDF
663

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano S., Shimizu K., Tsubota K. Corneal epithelial changes after excimer laser photorefractive keratectomy. Am J Ophthalmol. 1993 Apr 15;115(4):441–443. doi: 10.1016/s0002-9394(14)74444-7. [DOI] [PubMed] [Google Scholar]
  2. Amano S., Shimizu K., Tsubota K. Specular microscopic evaluation of the corneal epithelium after excimer laser photorefractive keratectomy. Am J Ophthalmol. 1994 Mar 15;117(3):381–384. doi: 10.1016/s0002-9394(14)73149-6. [DOI] [PubMed] [Google Scholar]
  3. Araki K., Ohashi Y., Kinoshita S., Hayashi K., Kuwayama Y., Tano Y. Epithelial wound healing in the denervated cornea. Curr Eye Res. 1994 Mar;13(3):203–211. doi: 10.3109/02713689408995778. [DOI] [PubMed] [Google Scholar]
  4. Beuerman R. W., McDonald M. B., Shofner R. S., Munnerlyn C. R., Clapham T. N., Salmeron B., Kaufman H. E. Quantitative histological studies of primate corneas after excimer laser photorefractive keratectomy. Arch Ophthalmol. 1994 Aug;112(8):1103–1110. doi: 10.1001/archopht.1994.01090200109031. [DOI] [PubMed] [Google Scholar]
  5. Beuerman R. W., Schimmelpfennig B. Sensory denervation of the rabbit cornea affects epithelial properties. Exp Neurol. 1980 Jul;69(1):196–201. doi: 10.1016/0014-4886(80)90154-5. [DOI] [PubMed] [Google Scholar]
  6. Campos M., Hertzog L., Garbus J. J., McDonnell P. J. Corneal sensitivity after photorefractive keratectomy. Am J Ophthalmol. 1992 Jul 15;114(1):51–54. doi: 10.1016/s0002-9394(14)77412-4. [DOI] [PubMed] [Google Scholar]
  7. Chang S. W., Hsu H. C., Hu F. R., Chen M. S. Corneal autofluorescence and epithelial barrier function in diabetic patients. Ophthalmic Res. 1995 Mar-Apr;27(2):74–79. doi: 10.1159/000267600. [DOI] [PubMed] [Google Scholar]
  8. Chang S. W., Hu F. R. Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea. 1993 Nov;12(6):493–499. doi: 10.1097/00003226-199311000-00006. [DOI] [PubMed] [Google Scholar]
  9. Chang S. W., Hu F. R. The epithelial barrier function in clear corneal grafts. Ophthalmic Res. 1994;26(5):283–289. doi: 10.1159/000267490. [DOI] [PubMed] [Google Scholar]
  10. DUNNINGTON J. H., WEIMAR V. Influence of the epithelium on the healing of corneal incisions. Am J Ophthalmol. 1958 Apr;45(4 Pt 2):89–95. doi: 10.1016/0002-9394(58)90227-7. [DOI] [PubMed] [Google Scholar]
  11. Del Pero R. A., Gigstad J. E., Roberts A. D., Klintworth G. K., Martin C. A., L'Esperance F. A., Jr, Taylor D. M. A refractive and histopathologic study of excimer laser keratectomy in primates. Am J Ophthalmol. 1990 Apr 15;109(4):419–429. doi: 10.1016/s0002-9394(14)74608-2. [DOI] [PubMed] [Google Scholar]
  12. Fogle J. A., Kenyon K. R., Stark W. J. Damage to epithelial basement membrane by thermokeratoplasty. Am J Ophthalmol. 1977 Mar;83(3):392–401. doi: 10.1016/0002-9394(77)90739-5. [DOI] [PubMed] [Google Scholar]
  13. Gartry D. S., Kerr Muir M. G., Marshall J. Excimer laser photorefractive keratectomy. 18-month follow-up. Ophthalmology. 1992 Aug;99(8):1209–1219. doi: 10.1016/s0161-6420(92)31821-4. [DOI] [PubMed] [Google Scholar]
  14. Gipson I. K., Spurr-Michaud S., Tisdale A., Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest Ophthalmol Vis Sci. 1989 Mar;30(3):425–434. [PubMed] [Google Scholar]
  15. Hanna K. D., Pouliquen Y., Waring G. O., 3rd, Savoldelli M., Cotter J., Morton K., Menasche M. Corneal stromal wound healing in rabbits after 193-nm excimer laser surface ablation. Arch Ophthalmol. 1989 Jun;107(6):895–901. doi: 10.1001/archopht.1989.01070010917041. [DOI] [PubMed] [Google Scholar]
  16. Kenyon K. R., Fogle J. A., Stone D. L., Stark W. J. Regeneration of corneal epithelial basement membrane following thermal cauterization. Invest Ophthalmol Vis Sci. 1977 Apr;16(4):292–301. [PubMed] [Google Scholar]
  17. Khodadoust A. A., Silverstein A. M., Kenyon D. R., Dowling J. E. Adhesion of regenerating corneal epithelium. The role of basement membrane. Am J Ophthalmol. 1968 Mar;65(3):339–348. doi: 10.1016/0002-9394(68)93082-1. [DOI] [PubMed] [Google Scholar]
  18. Madigan M. C., Holden B. A. Reduced epithelial adhesion after extended contact lens wear correlates with reduced hemidesmosome density in cat cornea. Invest Ophthalmol Vis Sci. 1992 Feb;33(2):314–323. [PubMed] [Google Scholar]
  19. McDonald M. B., Frantz J. M., Klyce S. D., Salmeron B., Beuerman R. W., Munnerlyn C. R., Clapham T. N., Koons S. J., Kaufman H. E. One-year refractive results of central photorefractive keratectomy for myopia in the nonhuman primate cornea. Arch Ophthalmol. 1990 Jan;108(1):40–47. doi: 10.1001/archopht.1990.01070030046026. [DOI] [PubMed] [Google Scholar]
  20. SIGELMAN S., FRIEDENWALD J. S. Mitotic and wound-healing activities of the corneal epithelium; effect of sensory denervation. AMA Arch Ophthalmol. 1954 Jul;52(1):46–57. doi: 10.1001/archopht.1954.00920050048005. [DOI] [PubMed] [Google Scholar]
  21. Taylor D. M., L'Esperance F. A., Jr, Del Pero R. A., Roberts A. D., Gigstad J. E., Klintworth G., Martin C. A., Warner J. Human excimer laser lamellar keratectomy. A clinical study. Ophthalmology. 1989 May;96(5):654–664. doi: 10.1016/s0161-6420(89)32836-3. [DOI] [PubMed] [Google Scholar]
  22. Tuft S. J., Zabel R. W., Marshall J. Corneal repair following keratectomy. A comparison between conventional surgery and laser photoablation. Invest Ophthalmol Vis Sci. 1989 Aug;30(8):1769–1777. [PubMed] [Google Scholar]
  23. de Kruijf E. J., Boot J. P., Laterveer L., van Best J. A., Ramselaar J. A., Oosterhuis J. A. A simple method for determination of corneal epithelial permeability in humans. Curr Eye Res. 1987 Nov;6(11):1327–1334. doi: 10.3109/02713688708997558. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES