Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1996 Oct;80(10):911–914. doi: 10.1136/bjo.80.10.911

Temporary corneal stem cell dysfunction after radiation therapy.

H Fujishima 1, J Shimazaki 1, K Tsubota 1
PMCID: PMC505649  PMID: 8976704

Abstract

BACKGROUND: Radiation therapy can cause corneal and conjunctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. METHODS: A 44-year-old man developed a corneal epithelial abnormality associated with conjunctival and corneal inflammation following radiation therapy for maxillary cancer. He experienced ocular pain and loss of vision followed by conjunctival epithelialisation of the upper and lower parts of the cornea. RESULTS: Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. CONCLUSION: Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery.

Full text

PDF
911

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COCHET P., BONNET R. [Corneal esthesiometry. Performance and practical importance]. Bull Soc Ophtalmol Fr. 1961 Jul-Aug;6:541–550. [PubMed] [Google Scholar]
  2. Chacko D. C. Considerations in the diagnosis of radiation injury. JAMA. 1981 Mar 27;245(12):1255–1258. [PubMed] [Google Scholar]
  3. Chen J. J., Tseng S. C. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2219–2233. [PubMed] [Google Scholar]
  4. Copeland R. A., Jr, Char D. H. Limbal autograft reconstruction after conjunctival squamous cell carcinoma. Am J Ophthalmol. 1990 Oct 15;110(4):412–415. doi: 10.1016/s0002-9394(14)77023-0. [DOI] [PubMed] [Google Scholar]
  5. Davanger M., Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971 Feb 19;229(5286):560–561. doi: 10.1038/229560a0. [DOI] [PubMed] [Google Scholar]
  6. Dua H. S., Forrester J. V. The corneoscleral limbus in human corneal epithelial wound healing. Am J Ophthalmol. 1990 Dec 15;110(6):646–656. doi: 10.1016/s0002-9394(14)77062-x. [DOI] [PubMed] [Google Scholar]
  7. Hall P. A., Watt F. M. Stem cells: the generation and maintenance of cellular diversity. Development. 1989 Aug;106(4):619–633. doi: 10.1242/dev.106.4.619. [DOI] [PubMed] [Google Scholar]
  8. Hightower K. R. The influence of calcium on protein synthesis in the rabbit lens. Invest Ophthalmol Vis Sci. 1983 Oct;24(10):1422–1426. [PubMed] [Google Scholar]
  9. Huang A. J., Tseng S. C. Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci. 1991 Jan;32(1):96–105. [PubMed] [Google Scholar]
  10. Kenyon K. R., Tseng S. C. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989 May;96(5):709–723. doi: 10.1016/s0161-6420(89)32833-8. [DOI] [PubMed] [Google Scholar]
  11. Khaw P. T., Ward S., Grierson I., Rice N. S. Effect of beta radiation on proliferating human Tenon's capsule fibroblasts. Br J Ophthalmol. 1991 Oct;75(10):580–583. doi: 10.1136/bjo.75.10.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kruse F. E., Chen J. J., Tsai R. J., Tseng S. C. Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Invest Ophthalmol Vis Sci. 1990 Sep;31(9):1903–1913. [PubMed] [Google Scholar]
  13. Macfaul P. A., Bedford M. A. Ocular complications after therapeutic irradiation. Br J Ophthalmol. 1970 Apr;54(4):237–247. doi: 10.1136/bjo.54.4.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nelson J. D., Havener V. R., Cameron J. D. Cellulose acetate impressions of the ocular surface. Dry eye states. Arch Ophthalmol. 1983 Dec;101(12):1869–1872. doi: 10.1001/archopht.1983.01040020871007. [DOI] [PubMed] [Google Scholar]
  15. Pfister R. R. Corneal stem cell disease: concepts, categorization, and treatment by auto- and homotransplantation of limbal stem cells. CLAO J. 1994 Jan;20(1):64–72. [PubMed] [Google Scholar]
  16. Puangsricharern V., Tseng S. C. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995 Oct;102(10):1476–1485. doi: 10.1016/s0161-6420(95)30842-1. [DOI] [PubMed] [Google Scholar]
  17. Sakamoto R., Bennett E. S., Henry V. A., Paragina S., Narumi T., Izumi Y., Kamei Y., Nagatomi E., Miyanaga Y., Hamano H. The phenol red thread tear test: a cross-cultural study. Invest Ophthalmol Vis Sci. 1993 Dec;34(13):3510–3514. [PubMed] [Google Scholar]
  18. Tsubota K., Kajiwara K., Ugajin S., Hasegawa T. Conjunctival brush cytology. Acta Cytol. 1990 Mar-Apr;34(2):233–235. [PubMed] [Google Scholar]
  19. Xu K. P., Yagi Y., Toda I., Tsubota K. Tear function index. A new measure of dry eye. Arch Ophthalmol. 1995 Jan;113(1):84–88. doi: 10.1001/archopht.1995.01100010086025. [DOI] [PubMed] [Google Scholar]
  20. Zieske J. D., Bukusoglu G., Yankauckas M. A. Characterization of a potential marker of corneal epithelial stem cells. Invest Ophthalmol Vis Sci. 1992 Jan;33(1):143–152. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES