Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 1;89(23):11598–11602. doi: 10.1073/pnas.89.23.11598

Leukotriene C4 uses a probenecid-sensitive export carrier that does not recognize leukotriene B4.

B K Lam 1, K Xu 1, M B Atkins 1, K F Austen 1
PMCID: PMC50600  PMID: 1333613

Abstract

The export of leukotriene (LT) C4 from human eosinophils, a carrier-mediated process that is temperature-dependent and saturable, was characterized further in eosinophils and in two human leukemia cell lines that do not present an intact 5-lipoxygenase pathway. In eosinophils, KG-1 cells, and dimethyl sulfoxide (DMSO)-differentiated HL-60 cells, the respective Q10 values for temperature-dependent LTC4 export were 3.7, 3.3, and 3.4 and for energy of activation were 28.2 kcal/mol, 23.0 kcal/mol, and 27.8 kcal/mol (1 kcal = 4.18 kJ). When human eosinophils, KG-1 cells, and DMSO-differentiated HL-60 cells were preloaded with defined amounts of intracellular LTC4 by incubation with LTA4 and with incremental amounts of a glutathione conjugate, S-dinitrophenyl glutathione (GS-DNP) by sequential incubation with 1-chloro-2,4-dinitrobenzene, GS-DNP inhibited the export of LTC4 in a dose-dependent manner. By plotting the ratio of total GS-DNP (cell retained plus released) to the sum of total GS-DNP plus total LTC4 against the percentage inhibition of LTC4 release, IC40 values of 0.839, 0.803, and 0.841 were obtained for eosinophils, KG-1 cells, and DMSO-differentiated HL-60 cells, respectively. When cells preloaded with LTC4 were resuspended in incremental concentrations of the organic acid transport inhibitor, probenecid, there was a dose-dependent decrease in LTC4 release; GS-DNP and probenecid inhibited LTC4 release in a cumulative fashion, whereas neither inhibited the release of LTB4 from preloaded nondifferentiated HL-60 cells. Therefore, LTC4 export from cells of bone marrow origin occurs through a probenecid-sensitive membrane carrier shared by other glutathione conjugates and distinct from the LTB4 carrier export system.

Full text

PDF
11598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chagnon M., Gentile J., Gladu M., Sirois P. The mechanism of action of leukotrienes A4, C4 and D4 on human lung parenchyma in vitro. Lung. 1985;163(1):55–62. doi: 10.1007/BF02713805. [DOI] [PubMed] [Google Scholar]
  2. Dahlén S. E., Hansson G., Hedqvist P., Björck T., Granström E., Dahlén B. Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4, D4, and E4. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1712–1716. doi: 10.1073/pnas.80.6.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dahlén S. E., Hedqvist P., Hammarström S., Samuelsson B. Leukotrienes are potent constrictors of human bronchi. Nature. 1980 Dec 4;288(5790):484–486. doi: 10.1038/288484a0. [DOI] [PubMed] [Google Scholar]
  4. Evans J. F., Dupuis P., Ford-Hutchinson A. W. Purification and characterisation of leukotriene A4 hydrolase from rat neutrophils. Biochim Biophys Acta. 1985 May 29;840(1):43–50. doi: 10.1016/0304-4165(85)90160-6. [DOI] [PubMed] [Google Scholar]
  5. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  6. Hogaboom G. K., Cook M., Newton J. F., Varrichio A., Shorr R. G., Sarau H. M., Crooke S. T. Purification, characterization, and structural properties of a single protein from rat basophilic leukemia (RBL-1) cells possessing 5-lipoxygenase and leukotriene A4 synthetase activities. Mol Pharmacol. 1986 Dec;30(6):510–519. [PubMed] [Google Scholar]
  7. Ishikawa T., Müller M., Klünemann C., Schaub T., Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279–19286. [PubMed] [Google Scholar]
  8. Jones T. R., Davis C., Daniel E. E. Pharmacological study of the contractile activity of leukotriene C4 and D4 on isolated human airway smooth muscle. Can J Physiol Pharmacol. 1982 May;60(5):638–643. doi: 10.1139/y82-087. [DOI] [PubMed] [Google Scholar]
  9. Lam B. K., Gagnon L., Austen K. F., Soberman R. J. The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes. J Biol Chem. 1990 Aug 15;265(23):13438–13441. [PubMed] [Google Scholar]
  10. Lam B. K., Owen W. F., Jr, Austen K. F., Soberman R. J. The identification of a distinct export step following the biosynthesis of leukotriene C4 by human eosinophils. J Biol Chem. 1989 Aug 5;264(22):12885–12889. [PubMed] [Google Scholar]
  11. Lewis R. A., Austen K. F., Soberman R. J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990 Sep 6;323(10):645–655. doi: 10.1056/NEJM199009063231006. [DOI] [PubMed] [Google Scholar]
  12. Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacGlashan D. W., Jr, Peters S. P., Warner J., Lichtenstein L. M. Characteristics of human basophil sulfidopeptide leukotriene release: releasability defined as the ability of the basophil to respond to dimeric cross-links. J Immunol. 1986 Mar 15;136(6):2231–2239. [PubMed] [Google Scholar]
  14. Maycock A. L., Anderson M. S., DeSousa D. M., Kuehl F. A., Jr Leukotriene A4: preparation and enzymatic conversion in a cell-free system to leukotriene B4. J Biol Chem. 1982 Dec 10;257(23):13911–13914. [PubMed] [Google Scholar]
  15. Owen W. F., Jr, Petersen J., Austen K. F. Eosinophils altered phenotypically and primed by culture with granulocyte/macrophage colony-stimulating factor and 3T3 fibroblasts generate leukotriene C4 in response to FMLP. J Clin Invest. 1991 Jun;87(6):1958–1963. doi: 10.1172/JCI115222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palmblad J., Malmsten C. L., Udén A. M., Rådmark O., Engstedt L., Samuelsson B. Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood. 1981 Sep;58(3):658–661. [PubMed] [Google Scholar]
  17. Reid G. K., Kargman S., Vickers P. J., Mancini J. A., Léveillé C., Ethier D., Miller D. K., Gillard J. W., Dixon R. A., Evans J. F. Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem. 1990 Nov 15;265(32):19818–19823. [PubMed] [Google Scholar]
  18. Rollins T. E., Zanolari B., Springer M. S., Guindon Y., Zamboni R., Lau C. K., Rokach J. Synthetic leukotriene B4 is a potent chemotaxin but a weak secretagogue for human PMN. Prostaglandins. 1983 Feb;25(2):281–289. doi: 10.1016/0090-6980(83)90110-7. [DOI] [PubMed] [Google Scholar]
  19. Rouzer C. A., Matsumoto T., Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A. 1986 Feb;83(4):857–861. doi: 10.1073/pnas.83.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rouzer C. A., Samuelsson B. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6040–6044. doi: 10.1073/pnas.82.18.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rådmark O., Shimizu T., Jörnvall H., Samuelsson B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem. 1984 Oct 25;259(20):12339–12345. [PubMed] [Google Scholar]
  22. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  23. Spector R., Goetzl E. J. Leukotriene C4 transport by the choroid plexus in vitro. Science. 1985 Apr 19;228(4697):325–327. doi: 10.1126/science.3983632. [DOI] [PubMed] [Google Scholar]
  24. Ueda N., Kaneko S., Yoshimoto T., Yamamoto S. Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem. 1986 Jun 15;261(17):7982–7988. [PubMed] [Google Scholar]
  25. Yoshimoto T., Soberman R. J., Lewis R. A., Austen K. F. Isolation and characterization of leukotriene C4 synthetase of rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8399–8403. doi: 10.1073/pnas.82.24.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yoshimoto T., Soberman R. J., Spur B., Austen K. F. Properties of highly purified leukotriene C4 synthase of guinea pig lung. J Clin Invest. 1988 Mar;81(3):866–871. doi: 10.1172/JCI113396. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES