Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 15;89(24):11764–11768. doi: 10.1073/pnas.89.24.11764

Domain motions in phosphoglycerate kinase: determination of interdomain distance distributions by site-specific labeling and time-resolved fluorescence energy transfer.

G Haran 1, E Haas 1, B K Szpikowska 1, M T Mas 1
PMCID: PMC50637  PMID: 1465395

Abstract

3-Phosphoglycerate kinase is composed of two globular domains separated by a wide cleft. The substrate binding sites are situated on the inner surfaces of the two domains. By analogy to other kinases, it has been postulated that the catalytic mechanism of phosphoglycerate kinase involves a hinge bending domain motion that brings the substrates together to allow phosphoryl transfer. To characterize this large-scale conformational change, as well as the dynamics of the unliganded enzyme in solution, we have applied site-directed mutagenesis and time-resolved nonradiative energy transfer techniques. Two genetically engineered cysteines (Cys-135 and Cys-290), one in each of the two domains, were covalently labeled with a donor and acceptor pair of fluorescent probes. Analysis of subnanosecond fluorescence decay curves yielded the equilibrium distribution of interdomain distances. In the absence of substrates, the distribution of distances between the two labeled sites was very broad, with a full width at half maximum estimated as 20 A or broader, indicative of a large number of conformational substates in solution. The mean distance, 31.5 +/- 1 A, was 8 A smaller than in the crystal structure. Upon addition of ATP alone or of ATP and 3-phosphoglycerate, the average distance increased to 38 +/- 1 A and the width of the distribution decreased. Addition of 3-phosphoglycerate alone induced a similar but smaller change. The rate of conformational state fluctuations (interconversion between states) was found to be slow on the nanosecond time scale, as expected for a protein with a relatively large interdomain contact area.

Full text

PDF
11764

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir D., Haas E. Estimation of intramolecular distance distributions in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements. Biochemistry. 1987 Apr 21;26(8):2162–2175. doi: 10.1021/bi00382a015. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. M., Zucker F. H., Steitz T. A. Space-filling models of kinase clefts and conformation changes. Science. 1979 Apr 27;204(4391):375–380. doi: 10.1126/science.220706. [DOI] [PubMed] [Google Scholar]
  3. Banks R. D., Blake C. C., Evans P. R., Haser R., Rice D. W., Hardy G. W., Merrett M., Phillips A. W. Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature. 1979 Jun 28;279(5716):773–777. doi: 10.1038/279773a0. [DOI] [PubMed] [Google Scholar]
  4. Beechem J. M., Haas E. Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophys J. 1989 Jun;55(6):1225–1236. doi: 10.1016/S0006-3495(89)82918-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett W. S., Huber R. Structural and functional aspects of domain motions in proteins. CRC Crit Rev Biochem. 1984;15(4):291–384. doi: 10.3109/10409238409117796. [DOI] [PubMed] [Google Scholar]
  6. Betton J. M., Desmadril M., Mitraki A., Yon J. M. Unfolding-refolding transition of a hinge bending enzyme: horse muscle phosphoglycerate kinase induced by guanidine hydrochloride. Biochemistry. 1984 Dec 18;23(26):6654–6661. doi: 10.1021/bi00321a057. [DOI] [PubMed] [Google Scholar]
  7. Blake C. C., Rice D. W., Cohen F. E. A "helix-scissors" mechanism for the hinge-bending conformational change in phosphoglycerate kinase. Int J Pept Protein Res. 1986 May;27(5):443–448. doi: 10.1111/j.1399-3011.1986.tb01040.x. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
  10. Haas E., Katchalski-Katzir E., Steinberg I. Z. Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry. 1978 Nov 14;17(23):5064–5070. doi: 10.1021/bi00616a032. [DOI] [PubMed] [Google Scholar]
  11. Harlos K., Vas M., Blake C. F. Crystal structure of the binary complex of pig muscle phosphoglycerate kinase and its substrate 3-phospho-D-glycerate. Proteins. 1992 Feb;12(2):133–144. doi: 10.1002/prot.340120207. [DOI] [PubMed] [Google Scholar]
  12. Hudson E. N., Weber G. Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry. 1973 Oct 9;12(21):4154–4161. doi: 10.1021/bi00745a019. [DOI] [PubMed] [Google Scholar]
  13. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mas M. T., Bailey J. M., Resplandor Z. E. Site-directed mutagenesis of histidine-388 in the hinge region of yeast 3-phosphoglycerate kinase: effects on catalytic activity and activation by sulfate. Biochemistry. 1988 Feb 23;27(4):1168–1172. doi: 10.1021/bi00404a015. [DOI] [PubMed] [Google Scholar]
  15. Mas M. T., Chen C. Y., Hitzeman R. A., Riggs A. D. Active human-yeast chimeric phosphoglycerate kinases engineered by domain interchange. Science. 1986 Aug 15;233(4765):788–790. doi: 10.1126/science.3526552. [DOI] [PubMed] [Google Scholar]
  16. Mas M. T., Resplandor Z. E., Riggs A. D. Site-directed mutagenesis of glutamate-190 in the hinge region of yeast 3-phosphoglycerate kinase: implications for the mechanism of domain movement. Biochemistry. 1987 Aug 25;26(17):5369–5377. doi: 10.1021/bi00391a023. [DOI] [PubMed] [Google Scholar]
  17. Mas M. T., Resplandor Z. E. Structure-function relationships in 3-phosphoglycerate kinase: role of the carboxy-terminal peptide. Proteins. 1988;4(1):56–62. doi: 10.1002/prot.340040108. [DOI] [PubMed] [Google Scholar]
  18. McWherter C. A., Haas E., Leed A. R., Scheraga H. A. Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer. Biochemistry. 1986 Apr 22;25(8):1951–1963. doi: 10.1021/bi00356a018. [DOI] [PubMed] [Google Scholar]
  19. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pickover C. A., McKay D. B., Engelman D. M., Steitz T. A. Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. J Biol Chem. 1979 Nov 25;254(22):11323–11329. [PubMed] [Google Scholar]
  21. Sherman M. A., Szpikowska B. K., Dean S. A., Mathiowetz A. M., McQueen N. L., Mas M. T. Probing the role of arginines and histidines in the catalytic function and activation of yeast 3-phosphoglycerate kinase by site-directed mutagenesis. J Biol Chem. 1990 Jun 25;265(18):10659–10665. [PubMed] [Google Scholar]
  22. Sinev M. A., Razgulyaev O. I., Vas M., Timchenko A. A., Ptitsyn O. B. Correlation between enzyme activity and hinge-bending domain displacement in 3-phosphoglycerate kinase. Eur J Biochem. 1989 Mar 1;180(1):61–66. doi: 10.1111/j.1432-1033.1989.tb14615.x. [DOI] [PubMed] [Google Scholar]
  23. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
  24. Watson H. C., Walker N. P., Shaw P. J., Bryant T. N., Wendell P. L., Fothergill L. A., Perkins R. E., Conroy S. C., Dobson M. J., Tuite M. F. Sequence and structure of yeast phosphoglycerate kinase. EMBO J. 1982;1(12):1635–1640. doi: 10.1002/j.1460-2075.1982.tb01366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES