Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 15;89(24):12023–12027. doi: 10.1073/pnas.89.24.12023

Spectral enhancement of proteins: biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage lambda cI repressor.

J B Ross 1, D F Senear 1, E Waxman 1, B B Kombo 1, E Rusinova 1, Y T Huang 1, W R Laws 1, C A Hasselbacher 1
PMCID: PMC50690  PMID: 1465434

Abstract

We have used a tryptophan-requiring Escherichia coli auxotroph to replace the three tryptophan residues of lambda cI repressor with 5-hydroxy-L-tryptophan (5-OHTrp). By using a nonleaky promoter, we have achieved > 95% replacement of tryptophan in the repressor. We show that the absorbance and fluorescence properties of 5-OHTrp-lambda cI are clearly distinct from lambda cI repressor and that the fluorescence of 5-OHTrp-lambda cI repressor can be observed selectively in the presence of exogenous tryptophan. We also show that the 5-OHTrp-lambda cI repressor functional properties, as assessed by measurement of binding constants for self-association and for association to operator DNA, and structural properties, as assessed by fluorescence, are indistinguishable from the native repressor. Based on these results, we anticipate that the availability of spectrally enhanced proteins will significantly enhance the utility of both fluorescence and phosphorescence spectroscopies to study protein structure and function in complex interacting systems.

Full text

PDF
12023

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K., Johnson A. D., Shea M. A. Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1129–1133. doi: 10.1073/pnas.79.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983 Nov;25(2-3):167–178. doi: 10.1016/0378-1119(83)90222-6. [DOI] [PubMed] [Google Scholar]
  3. Badea M. G., Brand L. Time-resolved fluorescence measurements. Methods Enzymol. 1979;61:378–425. doi: 10.1016/0076-6879(79)61019-4. [DOI] [PubMed] [Google Scholar]
  4. Beckett D., Koblan K. S., Ackers G. K. Quantitative study of protein association at picomolar concentrations: the lambda phage cl repressor. Anal Biochem. 1991 Jul;196(1):69–75. doi: 10.1016/0003-2697(91)90118-d. [DOI] [PubMed] [Google Scholar]
  5. Beechem J. M., Brand L. Time-resolved fluorescence of proteins. Annu Rev Biochem. 1985;54:43–71. doi: 10.1146/annurev.bi.54.070185.000355. [DOI] [PubMed] [Google Scholar]
  6. Brenowitz M., Senear D. F., Shea M. A., Ackers G. K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 1986;130:132–181. doi: 10.1016/0076-6879(86)30011-9. [DOI] [PubMed] [Google Scholar]
  7. Bridges J. W., Williams R. T. The fluorescence of indoles and aniline derivatives. Biochem J. 1968 Mar;107(2):225–237. doi: 10.1042/bj1070225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen R. F. Fluorescence of protonated excited-state forms of 5-hydroxytryptamine (serotonin) and related indoles. Proc Natl Acad Sci U S A. 1968 Jun;60(2):598–605. doi: 10.1073/pnas.60.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cross A. J., Fleming G. R. Analysis of time-resolved fluorescence anisotropy decays. Biophys J. 1984 Jul;46(1):45–56. doi: 10.1016/S0006-3495(84)83997-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eftink M. R. Fluorescence techniques for studying protein structure. Methods Biochem Anal. 1991;35:127–205. doi: 10.1002/9780470110560.ch3. [DOI] [PubMed] [Google Scholar]
  11. Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
  12. Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
  13. Grinvald A., Steinberg I. Z. The fluorescence decay of tryptophan residues in native and denatured proteins. Biochim Biophys Acta. 1976 Apr 14;427(2):663–678. doi: 10.1016/0005-2795(76)90210-5. [DOI] [PubMed] [Google Scholar]
  14. Hogue C. W., Rasquinha I., Szabo A. G., MacManus J. P. A new intrinsic fluorescent probe for proteins. Biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin. FEBS Lett. 1992 Oct 5;310(3):269–272. doi: 10.1016/0014-5793(92)81346-n. [DOI] [PubMed] [Google Scholar]
  15. Hott J. L., Borkman R. F. The non-fluorescence of 4-fluorotryptophan. Biochem J. 1989 Nov 15;264(1):297–299. doi: 10.1042/bj2640297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koblan K. S., Ackers G. K. Energetics of subunit dimerization in bacteriophage lambda cI repressor: linkage to protons, temperature, and KCl. Biochemistry. 1991 Aug 6;30(31):7817–7821. doi: 10.1021/bi00245a022. [DOI] [PubMed] [Google Scholar]
  17. Laws W. R., Contino P. B. Fluorescence quenching studies: analysis of nonlinear Stern-Volmer data. Methods Enzymol. 1992;210:448–463. doi: 10.1016/0076-6879(92)10023-7. [DOI] [PubMed] [Google Scholar]
  18. Li E., Quian S. J., Nader L., Yang N. C., d'Avignon A., Sacchettini J. C., Gordon J. I. Nuclear magnetic resonance studies of 6-fluorotryptophan-substituted rat cellular retinol-binding protein II produced in Escherichia coli. Analysis of the apoprotein and the holoprotein containing bound all-trans-retinol and all-trans-retinal. J Biol Chem. 1989 Oct 15;264(29):17041–17048. [PubMed] [Google Scholar]
  19. Reidhaar-Olson J. F., Sauer R. T. Functionally acceptable substitutions in two alpha-helical regions of lambda repressor. Proteins. 1990;7(4):306–316. doi: 10.1002/prot.340070403. [DOI] [PubMed] [Google Scholar]
  20. Robertson D. E., Kroon P. A., Ho C. Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium. Biochemistry. 1977 Apr 5;16(7):1443–1451. doi: 10.1021/bi00626a032. [DOI] [PubMed] [Google Scholar]
  21. Senear D. F., Ackers G. K. Proton-linked contributions to site-specific interactions of lambda cI repressor and OR. Biochemistry. 1990 Jul 17;29(28):6568–6577. doi: 10.1021/bi00480a004. [DOI] [PubMed] [Google Scholar]
  22. Senear D. F., Batey R. Comparison of operator-specific and nonspecific DNA binding of the lambda cI repressor: [KCl] and pH effects. Biochemistry. 1991 Jul 9;30(27):6677–6688. doi: 10.1021/bi00241a007. [DOI] [PubMed] [Google Scholar]
  23. Waxman E., Ross J. B., Laue T. M., Guha A., Thiruvikraman S. V., Lin T. C., Konigsberg W. H., Nemerson Y. Tissue factor and its extracellular soluble domain: the relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry. 1992 Apr 28;31(16):3998–4003. doi: 10.1021/bi00131a015. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES