Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):281–291. doi: 10.1172/JCI118414

Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.

D Kaye 1, D Pimental 1, S Prasad 1, T Mäki 1, H J Berger 1, P L McNeil 1, T W Smith 1, R A Kelly 1
PMCID: PMC507016  PMID: 8567946

Abstract

One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased mechanical activity could lead to a hypertrophic response in cardiac myocytes.

Full Text

The Full Text of this article is available as a PDF (281.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonio J., Gonyea W. J. Role of muscle fiber hypertrophy and hyperplasia in intermittently stretched avian muscle. J Appl Physiol (1985) 1993 Apr;74(4):1893–1898. doi: 10.1152/jappl.1993.74.4.1893. [DOI] [PubMed] [Google Scholar]
  2. Backx P. H., Gao W. D., Azan-Backx M. D., Marban E. Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics. J Physiol. 1994 May 1;476(3):487–500. doi: 10.1113/jphysiol.1994.sp020149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benzaquen L. R., Nicholson-Weller A., Halperin J. A. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med. 1994 Mar 1;179(3):985–992. doi: 10.1084/jem.179.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger H. J., Prasad S. K., Davidoff A. J., Pimental D., Ellingsen O., Marsh J. D., Smith T. W., Kelly R. A. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am J Physiol. 1994 Jan;266(1 Pt 2):H341–H349. doi: 10.1152/ajpheart.1994.266.1.H341. [DOI] [PubMed] [Google Scholar]
  5. Bishop J. E., Mitchell J. J., Absher P. M., Baldor L., Geller H. A., Woodcock-Mitchell J., Hamblin M. J., Vacek P., Low R. B. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity. Am J Respir Cell Mol Biol. 1993 Aug;9(2):126–133. doi: 10.1165/ajrcmb/9.2.126. [DOI] [PubMed] [Google Scholar]
  6. Bogoyevitch M. A., Glennon P. E., Andersson M. B., Clerk A., Lazou A., Marshall C. J., Parker P. J., Sugden P. H. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem. 1994 Jan 14;269(2):1110–1119. [PubMed] [Google Scholar]
  7. Bugaisky L. B., Zak R. Differentiation of adult rat cardiac myocytes in cell culture. Circ Res. 1989 Mar;64(3):493–500. doi: 10.1161/01.res.64.3.493. [DOI] [PubMed] [Google Scholar]
  8. Casscells W., Speir E., Sasse J., Klagsbrun M., Allen P., Lee M., Calvo B., Chiba M., Haggroth L., Folkman J. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest. 1990 Feb;85(2):433–441. doi: 10.1172/JCI114456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chien K. R., Knowlton K. U., Zhu H., Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991 Dec;5(15):3037–3046. doi: 10.1096/fasebj.5.15.1835945. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Clark W. A., Rudnick S. J., Andersen L. C., LaPres J. J. Myosin heavy chain synthesis is independently regulated in hypertrophy and atrophy of isolated adult cardiac myocytes. J Biol Chem. 1994 Oct 14;269(41):25562–25569. [PubMed] [Google Scholar]
  12. Clark W. A., Rudnick S. J., LaPres J. J., Andersen L. C., LaPointe M. C. Regulation of hypertrophy and atrophy in cultured adult heart cells. Circ Res. 1993 Dec;73(6):1163–1176. doi: 10.1161/01.res.73.6.1163. [DOI] [PubMed] [Google Scholar]
  13. Clarke M. S., Caldwell R. W., Chiao H., Miyake K., McNeil P. L. Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res. 1995 Jun;76(6):927–934. doi: 10.1161/01.res.76.6.927. [DOI] [PubMed] [Google Scholar]
  14. Clarke M. S., Khakee R., McNeil P. L. Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J Cell Sci. 1993 Sep;106(Pt 1):121–133. doi: 10.1242/jcs.106.1.121. [DOI] [PubMed] [Google Scholar]
  15. Claycomb W. C. Atrial-natriuretic-factor mRNA is developmentally regulated in heart ventricles and actively expressed in cultured ventricular cardiac muscle cells of rat and human. Biochem J. 1988 Oct 15;255(2):617–620. [PMC free article] [PubMed] [Google Scholar]
  16. Claycomb W. C., Palazzo M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev Biol. 1980 Dec;80(2):466–482. doi: 10.1016/0012-1606(80)90419-4. [DOI] [PubMed] [Google Scholar]
  17. Cooper G., 4th, Kent R. L., Mann D. L. Load induction of cardiac hypertrophy. J Mol Cell Cardiol. 1989 Dec;21 (Suppl 5):11–30. doi: 10.1016/0022-2828(89)90768-2. [DOI] [PubMed] [Google Scholar]
  18. Davies P. F., Tripathi S. C. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res. 1993 Feb;72(2):239–245. doi: 10.1161/01.res.72.2.239. [DOI] [PubMed] [Google Scholar]
  19. Donohue T. J., Dworkin L. D., Lango M. N., Fliegner K., Lango R. P., Benstein J. A., Slater W. R., Catanese V. M. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation. 1994 Feb;89(2):799–809. doi: 10.1161/01.cir.89.2.799. [DOI] [PubMed] [Google Scholar]
  20. Eid H., Larson D. M., Springhorn J. P., Attawia M. A., Nayak R. C., Smith T. W., Kelly R. A. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res. 1992 Jul;71(1):40–50. doi: 10.1161/01.res.71.1.40. [DOI] [PubMed] [Google Scholar]
  21. Ellingsen O., Davidoff A. J., Prasad S. K., Berger H. J., Springhorn J. P., Marsh J. D., Kelly R. A., Smith T. W. Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function. Am J Physiol. 1993 Aug;265(2 Pt 2):H747–H754. doi: 10.1152/ajpheart.1993.265.2.H747. [DOI] [PubMed] [Google Scholar]
  22. Engelmann G. L., Dionne C. A., Jaye M. C. Acidic fibroblast growth factor and heart development. Role in myocyte proliferation and capillary angiogenesis. Circ Res. 1993 Jan;72(1):7–19. doi: 10.1161/01.res.72.1.7. [DOI] [PubMed] [Google Scholar]
  23. Fishel R. S., Thourani V., Eisenberg S. J., Shai S. Y., Corson M. A., Nabel E. G., Bernstein K. E., Berk B. C. Fibroblast growth factor stimulates angiotensin converting enzyme expression in vascular smooth muscle cells. Possible mediator of the response to vascular injury. J Clin Invest. 1995 Jan;95(1):377–387. doi: 10.1172/JCI117666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fujimoto T., Nakade S., Miyawaki A., Mikoshiba K., Ogawa K. Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol. 1992 Dec;119(6):1507–1513. doi: 10.1083/jcb.119.6.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991 Oct;3(5):841–848. doi: 10.1016/0955-0674(91)90058-7. [DOI] [PubMed] [Google Scholar]
  26. Ito H., Hirata Y., Adachi S., Tanaka M., Tsujino M., Koike A., Nogami A., Murumo F., Hiroe M. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest. 1993 Jul;92(1):398–403. doi: 10.1172/JCI116579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ivester C. T., Kent R. L., Tagawa H., Tsutsui H., Imamura T., Cooper G., 4th, McDermott P. J. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am J Physiol. 1993 Aug;265(2 Pt 2):H666–H674. doi: 10.1152/ajpheart.1993.265.2.H666. [DOI] [PubMed] [Google Scholar]
  28. Jin Y., Pasumarthi K. B., Bock M. E., Lytras A., Kardami E., Cattini P. A. Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J Mol Cell Cardiol. 1994 Nov;26(11):1449–1459. doi: 10.1006/jmcc.1994.1164. [DOI] [PubMed] [Google Scholar]
  29. Juliano R. L., Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993 Feb;120(3):577–585. doi: 10.1083/jcb.120.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kardami E., Fandrich R. R. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol. 1989 Oct;109(4 Pt 1):1865–1875. doi: 10.1083/jcb.109.4.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kato S., Ivester C. T., Cooper G., 4th, Zile M. R., McDermott P. J. Growth effects of electrically stimulated contraction on adult feline cardiocytes in primary culture. Am J Physiol. 1995 Jun;268(6 Pt 2):H2495–H2504. doi: 10.1152/ajpheart.1995.268.6.H2495. [DOI] [PubMed] [Google Scholar]
  32. Knowlton K. U., Baracchini E., Ross R. S., Harris A. N., Henderson S. A., Evans S. M., Glembotski C. C., Chien K. R. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J Biol Chem. 1991 Apr 25;266(12):7759–7768. [PubMed] [Google Scholar]
  33. Kubisch C., Wollnik B., Maass A., Meyer R., Vetter H., Neyses L. Immediate-early gene induction by repetitive mechanical but not electrical activity in adult rat cardiomyocytes. FEBS Lett. 1993 Nov 29;335(1):37–40. doi: 10.1016/0014-5793(93)80434-v. [DOI] [PubMed] [Google Scholar]
  34. LaMorte V. J., Thorburn J., Absher D., Spiegel A., Brown J. H., Chien K. R., Feramisco J. R., Knowlton K. U. Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem. 1994 May 6;269(18):13490–13496. [PubMed] [Google Scholar]
  35. Mann D. L., Kent R. L., Cooper G., 4th Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res. 1989 Jun;64(6):1079–1090. doi: 10.1161/01.res.64.6.1079. [DOI] [PubMed] [Google Scholar]
  36. Mason I. J. The ins and outs of fibroblast growth factors. Cell. 1994 Aug 26;78(4):547–552. doi: 10.1016/0092-8674(94)90520-7. [DOI] [PubMed] [Google Scholar]
  37. McNeil P. L. Cellular and molecular adaptations to injurious mechanical stress. Trends Cell Biol. 1993 Sep;3(9):302–307. doi: 10.1016/0962-8924(93)90012-p. [DOI] [PubMed] [Google Scholar]
  38. McNeil P. L., Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol. 1992 May;140(5):1097–1109. [PMC free article] [PubMed] [Google Scholar]
  39. McNeil P. L., Muthukrishnan L., Warder E., D'Amore P. A. Growth factors are released by mechanically wounded endothelial cells. J Cell Biol. 1989 Aug;109(2):811–822. doi: 10.1083/jcb.109.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mcneil P. L. Incorporation of macromolecules into living cells. Methods Cell Biol. 1989;29:153–173. doi: 10.1016/s0091-679x(08)60193-4. [DOI] [PubMed] [Google Scholar]
  41. Mima T., Ueno H., Fischman D. A., Williams L. T., Mikawa T. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):467–471. doi: 10.1073/pnas.92.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Miyamoto M., Naruo K., Seko C., Matsumoto S., Kondo T., Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol. 1993 Jul;13(7):4251–4259. doi: 10.1128/mcb.13.7.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Morino N., Mimura T., Hamasaki K., Tobe K., Ueki K., Kikuchi K., Takehara K., Kadowaki T., Yazaki Y., Nojima Y. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J Biol Chem. 1995 Jan 6;270(1):269–273. doi: 10.1074/jbc.270.1.269. [DOI] [PubMed] [Google Scholar]
  44. Padua R. R., Kardami E. Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. Growth Factors. 1993;8(4):291–306. doi: 10.3109/08977199308991574. [DOI] [PubMed] [Google Scholar]
  45. Parker T. G., Chow K. L., Schwartz R. J., Schneider M. D. Positive and negative control of the skeletal alpha-actin promoter in cardiac muscle. A proximal serum response element is sufficient for induction by basic fibroblast growth factor (FGF) but not for inhibition by acidic FGF. J Biol Chem. 1992 Feb 15;267(5):3343–3350. [PubMed] [Google Scholar]
  46. Parker T. G., Schneider M. D. Growth factors, proto-oncogenes, and plasticity of the cardiac phenotype. Annu Rev Physiol. 1991;53:179–200. doi: 10.1146/annurev.ph.53.030191.001143. [DOI] [PubMed] [Google Scholar]
  47. Parlow M. H., Bolender D. L., Kokan-Moore N. P., Lough J. Localization of bFGF-like proteins as punctate inclusions in the preseptation myocardium of the chicken embryo. Dev Biol. 1991 Jul;146(1):139–147. doi: 10.1016/0012-1606(91)90454-b. [DOI] [PubMed] [Google Scholar]
  48. Perrella M. A., Mäki T., Prasad S., Pimental D., Singh K., Takahashi N., Yoshizumi M., Alali A., Higashiyama S., Kelly R. A. Regulation of heparin-binding epidermal growth factor-like growth factor mRNA levels by hypertrophic stimuli in neonatal and adult rat cardiac myocytes. J Biol Chem. 1994 Oct 28;269(43):27045–27050. [PubMed] [Google Scholar]
  49. Sadoshima J., Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993 Apr;12(4):1681–1692. doi: 10.1002/j.1460-2075.1993.tb05813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep;73(3):413–423. doi: 10.1161/01.res.73.3.413. [DOI] [PubMed] [Google Scholar]
  51. Sadoshima J., Jahn L., Takahashi T., Kulik T. J., Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992 May 25;267(15):10551–10560. [PubMed] [Google Scholar]
  52. Sadoshima J., Qiu Z., Morgan J. P., Izumo S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res. 1995 Jan;76(1):1–15. doi: 10.1161/01.res.76.1.1. [DOI] [PubMed] [Google Scholar]
  53. Sadoshima J., Takahashi T., Jahn L., Izumo S. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9905–9909. doi: 10.1073/pnas.89.20.9905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  55. Sasaki H., Hoshi H., Hong Y. M., Suzuki T., Kato T., Sasaki H., Saito M., Youki H., Karube K., Konno S. Purification of acidic fibroblast growth factor from bovine heart and its localization in the cardiac myocytes. J Biol Chem. 1989 Oct 15;264(29):17606–17612. [PubMed] [Google Scholar]
  56. Schwartz M. A. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J Cell Biol. 1993 Feb;120(4):1003–1010. doi: 10.1083/jcb.120.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Shubeita H. E., McDonough P. M., Harris A. N., Knowlton K. U., Glembotski C. C., Brown J. H., Chien K. R. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem. 1990 Nov 25;265(33):20555–20562. [PubMed] [Google Scholar]
  58. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. doi: 10.1161/01.res.56.6.884. [DOI] [PubMed] [Google Scholar]
  59. Speir E., Tanner V., Gonzalez A. M., Farris J., Baird A., Casscells W. Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis. Circ Res. 1992 Aug;71(2):251–259. doi: 10.1161/01.res.71.2.251. [DOI] [PubMed] [Google Scholar]
  60. Spirito P., Fu Y. M., Yu Z. X., Epstein S. E., Casscells W. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation. 1991 Jul;84(1):322–332. doi: 10.1161/01.cir.84.1.322. [DOI] [PubMed] [Google Scholar]
  61. Steinhardt R. A., Bi G., Alderton J. M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 1994 Jan 21;263(5145):390–393. doi: 10.1126/science.7904084. [DOI] [PubMed] [Google Scholar]
  62. Sugi Y., Sasse J., Lough J. Inhibition of precardiac mesoderm cell proliferation by antisense oligodeoxynucleotide complementary to fibroblast growth factor-2 (FGF-2). Dev Biol. 1993 May;157(1):28–37. doi: 10.1006/dbio.1993.1109. [DOI] [PubMed] [Google Scholar]
  63. Vagner S., Gensac M. C., Maret A., Bayard F., Amalric F., Prats H., Prats A. C. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol. 1995 Jan;15(1):35–44. doi: 10.1128/mcb.15.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Waspe L. E., Ordahl C. P., Simpson P. C. The cardiac beta-myosin heavy chain isogene is induced selectively in alpha 1-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J Clin Invest. 1990 Apr;85(4):1206–1214. doi: 10.1172/JCI114554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Weiner H. L., Swain J. L. Acidic fibroblast growth factor mRNA is expressed by cardiac myocytes in culture and the protein is localized to the extracellular matrix. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2683–2687. doi: 10.1073/pnas.86.8.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wiedłocha A., Falnes P. O., Madshus I. H., Sandvig K., Olsnes S. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell. 1994 Mar 25;76(6):1039–1051. doi: 10.1016/0092-8674(94)90381-6. [DOI] [PubMed] [Google Scholar]
  67. Wilson E., Mai Q., Sudhir K., Weiss R. H., Ives H. E. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol. 1993 Nov;123(3):741–747. doi: 10.1083/jcb.123.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Yamazaki T., Komuro I., Kudoh S., Zou Y., Shiojima I., Mizuno T., Takano H., Hiroi Y., Ueki K., Tobe K. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res. 1995 Aug;77(2):258–265. doi: 10.1161/01.res.77.2.258. [DOI] [PubMed] [Google Scholar]
  69. Yamazaki T., Tobe K., Hoh E., Maemura K., Kaida T., Komuro I., Tamemoto H., Kadowaki T., Nagai R., Yazaki Y. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem. 1993 Jun 5;268(16):12069–12076. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES