Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):339–348. doi: 10.1172/JCI118421

Energy-ubiquitin-dependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids.

G Tiao 1, J Fagan 1, V Roegner 1, M Lieberman 1, J J Wang 1, J E Fischer 1, P O Hasselgren 1
PMCID: PMC507023  PMID: 8567953

Abstract

Recent studies suggest that sepsis-induced increase in muscle proteolysis mainly reflects energy-ubiquitin-dependent protein breakdown. We tested the hypothesis that glucocorticoids activate the energy-ubiquitin-dependent proteolytic pathway in skeletal muscle during sepsis. Rats underwent induction of sepsis by cecal ligation and puncture or were sham-operated and muscle protein breakdown rates were measured 16 h later. The glucocorticoid receptor antagonist RU 38486 or vehicle was administered to groups of septic and sham-operated rats. In other experiments, dexamethasone (2.5 or 10 mg/kg) was injected subcutaneously in normal rats. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Energy-dependent proteolysis was determined in incubated muscles depleted of energy with 2-deoxyglucose and 2,4-dinitrophenol. Levels of muscle ubiquitin mRNA and free and conjugated ubiquitin were determined by Northern and Western blot, respectively. RU 38486 inhibited the sepsis-induced increase in total and myofibrillar energy-dependent protein breakdown rates and blunted the increase in ubiquitin mRNA levels and free ubiquitin. Some, but not all, sepsis-induced changes in ubiquitin protein conjugates were inhibited by RU 38486. Injection of dexamethasone in normal rats increased energy-dependent proteolysis and ubiquitin mRNA levels. The results suggest that glucocorticoids regulate the energy-ubiquitin-dependent proteolytic pathway in skeletal muscle during sepsis.

Full Text

The Full Text of this article is available as a PDF (325.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. T., Board P. G. Unequal crossover generates variation in ubiquitin coding unit number at the human UbC polyubiquitin locus. Am J Hum Genet. 1989 Apr;44(4):534–542. [PMC free article] [PubMed] [Google Scholar]
  2. Baracos V. E., Goldberg A. L. Maintenance of normal length improves protein balance and energy status in isolated rat skeletal muscles. Am J Physiol. 1986 Oct;251(4 Pt 1):C588–C596. doi: 10.1152/ajpcell.1986.251.4.C588. [DOI] [PubMed] [Google Scholar]
  3. Bulkley G. B. The role of oxygen free radicals in human disease processes. Surgery. 1983 Sep;94(3):407–411. [PubMed] [Google Scholar]
  4. Chaudry I. H., Wichterman K. A., Baue A. E. Effect of sepsis on tissue adenine nucleotide levels. Surgery. 1979 Feb;85(2):205–211. [PubMed] [Google Scholar]
  5. Clowes G. H., Jr, George B. C., Villee C. A., Jr, Saravis C. A. Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med. 1983 Mar 10;308(10):545–552. doi: 10.1056/NEJM198303103081001. [DOI] [PubMed] [Google Scholar]
  6. Darmaun D., Matthews D. E., Bier D. M. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol. 1988 Sep;255(3 Pt 1):E366–E373. doi: 10.1152/ajpendo.1988.255.3.E366. [DOI] [PubMed] [Google Scholar]
  7. Davies K. J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed] [Google Scholar]
  8. Etlinger J. D., Zak R., Fischman D. A. Compositional studies of myofibrils from rabbit striated muscle. J Cell Biol. 1976 Jan;68(1):123–141. doi: 10.1083/jcb.68.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fagan J. M., Wajnberg E. F., Culbert L., Waxman L. ATP depletion stimulates calcium-dependent protein breakdown in chick skeletal muscle. Am J Physiol. 1992 May;262(5 Pt 1):E637–E643. doi: 10.1152/ajpendo.1992.262.5.E637. [DOI] [PubMed] [Google Scholar]
  10. Fang C. H., Tiao G., James H., Ogle C., Fischer J. E., Hasselgren P. O. Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway. J Am Coll Surg. 1995 Feb;180(2):161–170. [PubMed] [Google Scholar]
  11. Furuno K., Goodman M. N., Goldberg A. L. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem. 1990 May 25;265(15):8550–8557. [PubMed] [Google Scholar]
  12. Goldberg A. L. Functions of the proteasome: the lysis at the end of the tunnel. Science. 1995 Apr 28;268(5210):522–523. doi: 10.1126/science.7725095. [DOI] [PubMed] [Google Scholar]
  13. Goldberg A. L., Martel S. B., Kushmerick M. J. In vitro preparations of the diaphragm and other skeletal muscles. Methods Enzymol. 1975;39:82–94. doi: 10.1016/s0076-6879(75)39012-5. [DOI] [PubMed] [Google Scholar]
  14. Graham R. W., Jones D., Candido E. P. UbiA, the major polyubiquitin locus in Caenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol Cell Biol. 1989 Jan;9(1):268–277. doi: 10.1128/mcb.9.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall-Angerås M., Angerås U., Hasselgren P. O., Fischer J. E. Corticosterone alone does not explain increased muscle proteolysis in septic rats. J Surg Res. 1990 Apr;48(4):368–372. doi: 10.1016/0022-4804(90)90077-f. [DOI] [PubMed] [Google Scholar]
  16. Hall-Angerås M., Angerås U., Zamir O., Hasselgren P. O., Fischer J. E. Effect of the glucocorticoid receptor antagonist RU 38486 on muscle protein breakdown in sepsis. Surgery. 1991 Apr;109(4):468–473. [PubMed] [Google Scholar]
  17. Hall-Angerås M., Angerås U., von Allmen D., Higashiguchi T., Zamir O., Hasselgren P. O., Fischer J. E. Influence of sepsis in rats on muscle protein turnover in vivo and in tissue incubated under different in vitro conditions. Metabolism. 1991 Mar;40(3):247–251. doi: 10.1016/0026-0495(91)90105-6. [DOI] [PubMed] [Google Scholar]
  18. Hasselgren P. O., Hall-Angerås M., Angerås U., Benson D., James J. H., Fischer J. E. Regulation of total and myofibrillar protein breakdown in rat extensor digitorum longus and soleus muscle incubated flaccid or at resting length. Biochem J. 1990 Apr 1;267(1):37–44. doi: 10.1042/bj2670037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hasselgren P. O., James J. H., Benson D. W., Hall-Angerås M., Angerås U., Hiyama D. T., Li S., Fischer J. E. Total and myofibrillar protein breakdown in different types of rat skeletal muscle: effects of sepsis and regulation by insulin. Metabolism. 1989 Jul;38(7):634–640. doi: 10.1016/0026-0495(89)90100-5. [DOI] [PubMed] [Google Scholar]
  20. Hasselgren P. O., James J. H., Fischer J. E. Inhibited muscle amino acid uptake in sepsis. Ann Surg. 1986 Apr;203(4):360–365. doi: 10.1097/00000658-198604000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hayashi T., Noga M., Matsuda M. Nucleotide sequence and expression of the rat polyubiquitin mRNA. Biochim Biophys Acta. 1994 Jun 21;1218(2):232–234. doi: 10.1016/0167-4781(94)90020-5. [DOI] [PubMed] [Google Scholar]
  22. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  23. Hummel R. P., 3rd, Hasselgren P. O., James J. H., Warner B. W., Fischer J. E. The effect of sepsis in rats on skeletal muscle protein synthesis in vivo and in periphery and central core of incubated muscle preparations in vitro. Metabolism. 1988 Dec;37(12):1120–1127. doi: 10.1016/0026-0495(88)90187-4. [DOI] [PubMed] [Google Scholar]
  24. Kayali A. G., Young V. R., Goodman M. N. Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am J Physiol. 1987 May;252(5 Pt 1):E621–E626. doi: 10.1152/ajpendo.1987.252.5.E621. [DOI] [PubMed] [Google Scholar]
  25. Kelly F. J., Goldspink D. F. The differing responses of four muscle types to dexamethasone treatment in the rat. Biochem J. 1982 Oct 15;208(1):147–151. doi: 10.1042/bj2080147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Konagaya M., Bernard P. A., Max S. R. Blockade of glucocorticoid receptor binding and inhibition of dexamethasone-induced muscle atrophy in the rat by RU38486, a potent glucocorticoid antagonist. Endocrinology. 1986 Jul;119(1):375–380. doi: 10.1210/endo-119-1-375. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Llovera M., García-Martínez C., Agell N., Marzábal M., López-Soriano F. J., Argilés J. M. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett. 1994 Feb 7;338(3):311–318. doi: 10.1016/0014-5793(94)80290-4. [DOI] [PubMed] [Google Scholar]
  29. Mitch W. E., Medina R., Grieber S., May R. C., England B. K., Price S. R., Bailey J. L., Goldberg A. L. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994 May;93(5):2127–2133. doi: 10.1172/JCI117208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Newsholme E. A., Parry-Billings M. Properties of glutamine release from muscle and its importance for the immune system. JPEN J Parenter Enteral Nutr. 1990 Jul-Aug;14(4 Suppl):63S–67S. doi: 10.1177/014860719001400406. [DOI] [PubMed] [Google Scholar]
  31. Parthasarathy S., Morales A. J., Murphy A. A. Antioxidant: a new role for RU-486 and related compounds. J Clin Invest. 1994 Nov;94(5):1990–1995. doi: 10.1172/JCI117551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pedersen P. V., Warner B. W., Bjornson H. S., Hiyama D. T., Li S., Rigel D. F., Hasselgren P. O., Fischer J. E. Hemodynamic and metabolic alterations during experimental sepsis in young and adult rats. Surg Gynecol Obstet. 1989 Feb;168(2):148–156. [PubMed] [Google Scholar]
  33. Price S. R., England B. K., Bailey J. L., Van Vreede K., Mitch W. E. Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am J Physiol. 1994 Oct;267(4 Pt 1):C955–C960. doi: 10.1152/ajpcell.1994.267.4.C955. [DOI] [PubMed] [Google Scholar]
  34. Sax H. C., Talamini M. A., Hasselgren P. O., Rosenblum L., Ogle C. K., Fischer J. E. Increased synthesis of secreted hepatic proteins during abdominal sepsis. J Surg Res. 1988 Feb;44(2):109–116. doi: 10.1016/0022-4804(88)90038-8. [DOI] [PubMed] [Google Scholar]
  35. Tiao G., Fagan J. M., Samuels N., James J. H., Hudson K., Lieberman M., Fischer J. E., Hasselgren P. O. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J Clin Invest. 1994 Dec;94(6):2255–2264. doi: 10.1172/JCI117588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vaughan G. M., Becker R. A., Allen J. P., Goodwin C. W., Jr, Pruitt B. A., Jr, Mason A. D., Jr Cortisol and corticotrophin in burned patients. J Trauma. 1982 Apr;22(4):263–273. doi: 10.1097/00005373-198204000-00001. [DOI] [PubMed] [Google Scholar]
  37. Wiborg O., Pedersen M. S., Wind A., Berglund L. E., Marcker K. A., Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 1985 Mar;4(3):755–759. doi: 10.1002/j.1460-2075.1985.tb03693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Windmueller H. G., Spaeth A. E. Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem. 1980 Jan 10;255(1):107–112. [PubMed] [Google Scholar]
  39. Wing S. S., Goldberg A. L. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol. 1993 Apr;264(4 Pt 1):E668–E676. doi: 10.1152/ajpendo.1993.264.4.E668. [DOI] [PubMed] [Google Scholar]
  40. Young V. R., Munro H. N. Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978 Jul;37(9):2291–2300. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES