Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):349–358. doi: 10.1172/JCI118422

Modifications of myelin basic protein in DM20 transgenic mice are similar to those in myelin basic protein from multiple sclerosis.

F G Mastronardi 1, B Mak 1, C A Ackerley 1, B I Roots 1, M A Moscarello 1
PMCID: PMC507024  PMID: 8567954

Abstract

Transgenic mice containing different numbers of transgenes (2-70) of the myelin proteolipid protein DM20 were phenotypically normal up to 3 mo of age, after which the mice containing 70 copies of the transgene spontaneously demyelinated and died at 10-12 mo. Since we demonstrated that demyelination in multiple sclerosis involved specific chemical changes in myelin basic protein (MBP), we investigated the MBP in our transgenic line for similar changes. Both the total amount of MBP in brain and the MBP mRNA levels were unaffected at the different ages. All the isoforms (14-21 kD) of MBP were present, but the microheterogeneity (a posttranslational event) was changed resulting in a higher proportion of the less cationic components reminiscent of the changes in MBP found in multiple sclerosis. An increased amount of the citrullinated form of MBP was found by Western blot analysis. Immunogold labeling of cryosections of brain revealed a greater density of particles with the anticitrulline antibody at 10 mo and that the levels of peptidylarginine deiminase (which deiminates protein-bound arginine to citrulline) were increased. This stable transgenic line represents a useful animal model for the human disease multiple sclerosis.

Full Text

The Full Text of this article is available as a PDF (472.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady G. W., Fein D. B., Wood D. D., Moscarello M. A. The role of charge microheterogeneity of human myelin basic protein in the formation of phosphatidylglycerol multilayers. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1161–1165. doi: 10.1016/0006-291x(85)90307-9. [DOI] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Côté F., Collard J. F., Julien J. P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell. 1993 Apr 9;73(1):35–46. doi: 10.1016/0092-8674(93)90158-m. [DOI] [PubMed] [Google Scholar]
  4. Deibler G. E., Martenson R. E., Kies M. W. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem. 1972;2(2):139–165. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
  5. Fannon A. M., Mastronardi F. G., Moscarello M. A. Isolation and identification of proteolipid proteins in jimpy mouse brain. Neurochem Res. 1994 Aug;19(8):1005–1012. doi: 10.1007/BF00968710. [DOI] [PubMed] [Google Scholar]
  6. Fannon A. M., Moscarello M. A. Characterization of myelin basic protein charge isomers from adult mouse brain. Neuroreport. 1991 Mar;2(3):135–138. doi: 10.1097/00001756-199103000-00006. [DOI] [PubMed] [Google Scholar]
  7. Fannon A. M., Moscarello M. A. Myelin basic protein is affected by reduced synthesis of myelin proteolipid protein in the jimpy mouse. Biochem J. 1990 May 15;268(1):105–110. doi: 10.1042/bj2680105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Groome N., Dawkes A., Barry R., Hruby S., Alvord E., Jr New monoclonal antibodies reactive with defined sequential epitopes in human myelin basic protein. J Neuroimmunol. 1988 Oct;19(4):305–315. doi: 10.1016/0165-5728(88)90011-2. [DOI] [PubMed] [Google Scholar]
  10. Johnson R. S., Roder J. C., Riordan J. R. Over-expression of the DM-20 myelin proteolipid causes central nervous system demyelination in transgenic mice. J Neurochem. 1995 Mar;64(3):967–976. doi: 10.1046/j.1471-4159.1995.64030967.x. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lamensa J. W., Moscarello M. A. Deimination of human myelin basic protein by a peptidylarginine deiminase from bovine brain. J Neurochem. 1993 Sep;61(3):987–996. doi: 10.1111/j.1471-4159.1993.tb03612.x. [DOI] [PubMed] [Google Scholar]
  13. Manetto V., Sternberger N. H., Perry G., Sternberger L. A., Gambetti P. Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1988 Nov;47(6):642–653. doi: 10.1097/00005072-198811000-00007. [DOI] [PubMed] [Google Scholar]
  14. Mastronardi F. G., Ackerley C. A., Arsenault L., Roots B. I., Moscarello M. A. Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res. 1993 Oct 15;36(3):315–324. doi: 10.1002/jnr.490360309. [DOI] [PubMed] [Google Scholar]
  15. McLaurin J., Ackerley C. A., Moscarello M. A. Localization of basic proteins in human myelin. J Neurosci Res. 1993 Aug 15;35(6):618–628. doi: 10.1002/jnr.490350605. [DOI] [PubMed] [Google Scholar]
  16. Milner R. J., Sutcliffe J. G. Gene expression in rat brain. Nucleic Acids Res. 1983 Aug 25;11(16):5497–5520. doi: 10.1093/nar/11.16.5497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moscarello M. A., Brady G. W., Fein D. B., Wood D. D., Cruz T. F. The role of charge microheterogeneity of basic protein in the formation and maintenance of the multilayered structure of myelin: a possible role in multiple sclerosis. J Neurosci Res. 1986;15(1):87–99. doi: 10.1002/jnr.490150109. [DOI] [PubMed] [Google Scholar]
  18. Moscarello M. A., Wood D. D., Ackerley C., Boulias C. Myelin in multiple sclerosis is developmentally immature. J Clin Invest. 1994 Jul;94(1):146–154. doi: 10.1172/JCI117300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olsson J. E., Gordon J. W., Pawlyk B. S., Roof D., Hayes A., Molday R. S., Mukai S., Cowley G. S., Berson E. L., Dryja T. P. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron. 1992 Nov;9(5):815–830. doi: 10.1016/0896-6273(92)90236-7. [DOI] [PubMed] [Google Scholar]
  20. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  21. Prusiner S. B., DeArmond S. J. Prion diseases and neurodegeneration. Annu Rev Neurosci. 1994;17:311–339. doi: 10.1146/annurev.ne.17.030194.001523. [DOI] [PubMed] [Google Scholar]
  22. Sorg B. A., Smith M. M., Campagnoni A. T. Developmental expression of the myelin proteolipid protein and basic protein mRNAs in normal and dysmyelinating mutant mice. J Neurochem. 1987 Oct;49(4):1146–1154. doi: 10.1111/j.1471-4159.1987.tb10005.x. [DOI] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Westaway D., DeArmond S. J., Cayetano-Canlas J., Groth D., Foster D., Yang S. L., Torchia M., Carlson G. A., Prusiner S. B. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell. 1994 Jan 14;76(1):117–129. doi: 10.1016/0092-8674(94)90177-5. [DOI] [PubMed] [Google Scholar]
  26. Wood D. D., Moscarello M. A. The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem. 1989 Mar 25;264(9):5121–5127. [PubMed] [Google Scholar]
  27. Xu Z., Cork L. C., Griffin J. W., Cleveland D. W. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell. 1993 Apr 9;73(1):23–33. doi: 10.1016/0092-8674(93)90157-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES