Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):396–402. doi: 10.1172/JCI118428

Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering.

P Fratzl 1, O Paris 1, K Klaushofer 1, W J Landis 1
PMCID: PMC507030  PMID: 8567960

Abstract

We have studied the size and orientation of mineral crystals in cortical bone of oim/oim mice, which are known to produce only alpha 1(I) collagen homotrimers and which may serve as a model for human osteogenesis imperfecta. Long bones (femur and tibia) from young (5 wk old) oim/oim mice and from unaffected heterozygous counterparts were investigated by small-angle x-ray scattering (SAXS), which is sensitive to structures smaller than 50 nm. Mineral crystals were compared in terms of their thickness and their alignment with respect to the long bone axis. While electron microscopic tomography has recently shown the existence of large mineral blocks (with all dimensions typically exceeding 50 nm) in mineralized tendons of oim/oim mice, SAXS revealed a family of thin, possibly needle-like, crystals in cortical bone. These crystals were similar in shape to those observed previously in normal mice, but they were thinner and less well aligned in oim/oim mice relative to heterozygotes. Moreover, the crystal thickness and their alignment with the bone axis were more variable in oim/oim bone, with a close correlation (r = 0.94, P < 0.001) between the two parameters. The presence of smaller crystals with more variable alignment in corticalis of oim/oim mice may contribute to the brittleness of their bone, similar to that of human osteogenesis imperfecta.

Full Text

The Full Text of this article is available as a PDF (405.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byers P. H., Wallis G. A., Willing M. C. Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet. 1991 Jul;28(7):433–442. doi: 10.1136/jmg.28.7.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cassella J. P., Ali S. Y. Abnormal collagen and mineral formation in osteogenesis imperfecta. Bone Miner. 1992 May;17(2):123–128. doi: 10.1016/0169-6009(92)90722-p. [DOI] [PubMed] [Google Scholar]
  3. Chipman S. D., Sweet H. O., McBride D. J., Jr, Davisson M. T., Marks S. C., Jr, Shuldiner A. R., Wenstrup R. J., Rowe D. W., Shapiro J. R. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1701–1705. doi: 10.1073/pnas.90.5.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fratzl P., Fratzl-Zelman N., Klaushofer K., Vogl G., Koller K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int. 1991 Jun;48(6):407–413. doi: 10.1007/BF02556454. [DOI] [PubMed] [Google Scholar]
  5. Fratzl P., Groschner M., Vogl G., Plenk H., Jr, Eschberger J., Fratzl-Zelman N., Koller K., Klaushofer K. Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res. 1992 Mar;7(3):329–334. doi: 10.1002/jbmr.5650070313. [DOI] [PubMed] [Google Scholar]
  6. Fratzl P., Roschger P., Eschberger J., Abendroth B., Klaushofer K. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Miner Res. 1994 Oct;9(10):1541–1549. doi: 10.1002/jbmr.5650091006. [DOI] [PubMed] [Google Scholar]
  7. Hulmes D. J., Wess T. J., Prockop D. J., Fratzl P. Radial packing, order, and disorder in collagen fibrils. Biophys J. 1995 May;68(5):1661–1670. doi: 10.1016/S0006-3495(95)80391-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuivaniemi H., Tromp G., Prockop D. J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991 Apr;5(7):2052–2060. doi: 10.1096/fasebj.5.7.2010058. [DOI] [PubMed] [Google Scholar]
  9. Landis W. J., Paine M. C., Glimcher M. J. Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res. 1977 Apr;59(1):1–30. doi: 10.1016/s0022-5320(77)80025-7. [DOI] [PubMed] [Google Scholar]
  10. Landis W. J., Song M. J., Leith A., McEwen L., McEwen B. F. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993 Jan-Feb;110(1):39–54. doi: 10.1006/jsbi.1993.1003. [DOI] [PubMed] [Google Scholar]
  11. Landis W. J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995 May;16(5):533–544. doi: 10.1016/8756-3282(95)00076-p. [DOI] [PubMed] [Google Scholar]
  12. Stöss H., Freisinger P. Collagen fibrils of osteoid in osteogenesis imperfecta: morphometrical analysis of the fibril diameter. Am J Med Genet. 1993 Jan 15;45(2):257–257. doi: 10.1002/ajmg.1320450220. [DOI] [PubMed] [Google Scholar]
  13. Traub W., Arad T., Vetter U., Weiner S. Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol. 1994 Aug;14(4):337–345. doi: 10.1016/0945-053x(94)90200-3. [DOI] [PubMed] [Google Scholar]
  14. Vetter U., Eanes E. D., Kopp J. B., Termine J. D., Robey P. G. Changes in apatite crystal size in bones of patients with osteogenesis imperfecta. Calcif Tissue Int. 1991 Oct;49(4):248–250. doi: 10.1007/BF02556213. [DOI] [PubMed] [Google Scholar]
  15. Vetter U., Weis M. A., Mörike M., Eanes E. D., Eyre D. R. Collagen crosslinks and mineral crystallinity in bone of patients with osteogenesis imperfecta. J Bone Miner Res. 1993 Feb;8(2):133–137. doi: 10.1002/jbmr.5650080203. [DOI] [PubMed] [Google Scholar]
  16. Wagner H. D., Weiner S. On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech. 1992 Nov;25(11):1311–1320. doi: 10.1016/0021-9290(92)90286-a. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES