Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):413–420. doi: 10.1172/JCI118430

Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat.

M J Lortie 1, W F Novotny 1, O W Peterson 1, V Vallon 1, K Malvey 1, M Mendonca 1, J Satriano 1, P Insel 1, S C Thomson 1, R C Blantz 1
PMCID: PMC507032  PMID: 8567962

Abstract

Until recently, conversion of arginine to agmatine by arginine decarboxylase (ADC) was considered important only in plants and bacteria. In the following, we demonstrate ADC activity in the membrane-enriched fraction of brain, liver, and kidney cortex and medulla by radiochemical assay. Diamine oxidase, an enzyme shown here to metabolize agmatine, was localized by immunohistochemistry in kidney glomeruli and other nonrenal cells. Production of labeled agmatine, citrulline, and ornithine from [3H]arginine was demonstrated and endogenous agmatine levels (10(-6)M) in plasma ultrafiltrate and kidney were measured by HPLC. Microperfusion of agmatine into renal interstitium and into the urinary space of surface glomeruli of Wistar-Frömter rats produced reversible increases in nephron filtration rate (SNGFR) and absolute proximal reabsorption (APR). Renal denervation did not alter SNGFR effects but prevented APR changes. Yohimbine (an alpha 2 antagonist) microperfusion into the urinary space produced opposite effects to that of agmatine. Microperfusion of urinary space with BU-224 (microM), a synthetic imidazoline2 (I2) agonist, duplicated agmatine effects on SNGFR but not APR whereas an I1 agonist had no effect. Agmatine effects on SNGFR and APR are not only dissociable but appear to be mediated by different mechanisms. The production and degradation of this biologically active substance derived from arginine constitutes a novel endogenous regulatory system in the kidney.

Full Text

The Full Text of this article is available as a PDF (309.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbry P., Champe M., Chassande O., Munemitsu S., Champigny G., Lingueglia E., Maes P., Frelin C., Tartar A., Ullrich A. Human kidney amiloride-binding protein: cDNA structure and functional expression. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7347–7351. doi: 10.1073/pnas.87.19.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coupry I., Atlas D., Podevin R. A., Uzielli I., Parini A. Imidazoline-guanidinium receptive site in renal proximal tubule: asymmetric distribution, regulation by cations and interaction with an endogenous clonidine displacing substance. J Pharmacol Exp Ther. 1990 Jan;252(1):293–299. [PubMed] [Google Scholar]
  3. De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest. 1992 Apr;89(4):1248–1256. doi: 10.1172/JCI115709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edelstein D., Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 1992 Jan;41(1):26–29. doi: 10.2337/diab.41.1.26. [DOI] [PubMed] [Google Scholar]
  5. Ernsberger P., Giuliano R., Willette R. N., Granata A. R., Reis D. J. Hypotensive action of clonidine analogues correlates with binding affinity at imidazole and not alpha-2-adrenergic receptors in the rostral ventrolateral medulla. J Hypertens Suppl. 1988 Dec;6(4):S554–S557. doi: 10.1097/00004872-198812040-00174. [DOI] [PubMed] [Google Scholar]
  6. Ernsberger P., Haxhiu M. A., Graff L. M., Collins L. A., Dreshaj I., Grove D. L., Graves M. E., Schäfer S. G., Christen M. O. A novel mechanism of action for hypertension control: moxonidine as a selective I1-imidazoline agonist. Cardiovasc Drugs Ther. 1994 Mar;8 (Suppl 1):27–41. doi: 10.1007/BF00877082. [DOI] [PubMed] [Google Scholar]
  7. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ketteler M., Border W. A., Noble N. A. Cytokines and L-arginine in renal injury and repair. Am J Physiol. 1994 Aug;267(2 Pt 2):F197–F207. doi: 10.1152/ajprenal.1994.267.2.F197. [DOI] [PubMed] [Google Scholar]
  9. Kierszenbaum F., Wirth J. J., McCann P. P., Sjoerdsma A. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4278–4282. doi: 10.1073/pnas.84.12.4278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Li G., Regunathan S., Barrow C. J., Eshraghi J., Cooper R., Reis D. J. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. doi: 10.1126/science.7906055. [DOI] [PubMed] [Google Scholar]
  12. Loring R. H. Agmatine acts as an antagonist of neuronal nicotinic receptors. Br J Pharmacol. 1990 Jan;99(1):207–211. doi: 10.1111/j.1476-5381.1990.tb14680.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morrissey J., McCracken R., Ishidoya S., Klahr S. Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 1995 May;47(5):1458–1461. doi: 10.1038/ki.1995.204. [DOI] [PubMed] [Google Scholar]
  14. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  15. Novotny W. F., Chassande O., Baker M., Lazdunski M., Barbry P. Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. J Biol Chem. 1994 Apr 1;269(13):9921–9925. [PubMed] [Google Scholar]
  16. Patchett M. L., Monk C. R., Daniel R. M., Morgan H. W. Determination of agmatine, arginine, citrulline and ornithine by reversed-phase liquid chromatography using automated pre-column derivatization with o-phthalaldehyde. J Chromatogr. 1988 Mar 18;425(2):269–276. doi: 10.1016/0378-4347(88)80031-8. [DOI] [PubMed] [Google Scholar]
  17. Peterson O. W., Gushwa L. C., Blantz R. C. An analysis of glomerular-tubular balance in the rat proximal tubule. Pflugers Arch. 1986 Aug;407(2):221–227. doi: 10.1007/BF00580680. [DOI] [PubMed] [Google Scholar]
  18. Rastogi R., Dulson J., Rothstein S. J. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol. 1993 Nov;103(3):829–834. doi: 10.1104/pp.103.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reyes A. A., Karl I. E., Klahr S. Role of arginine in health and in renal disease. Am J Physiol. 1994 Sep;267(3 Pt 2):F331–F346. doi: 10.1152/ajprenal.1994.267.3.F331. [DOI] [PubMed] [Google Scholar]
  20. Scalabrino G., Lorenzini E. C., Ferioli M. E. Polyamines and mammalian hormones. Part I: Biosynthesis, interconversion and hormone effects. Mol Cell Endocrinol. 1991 May;77(1-3):1–35. doi: 10.1016/0303-7207(91)90056-x. [DOI] [PubMed] [Google Scholar]
  21. Scalabrino G., Lorenzini E. C. Polyamines and mammalian hormones. Part II: Paracrine signals and intracellular regulators. Mol Cell Endocrinol. 1991 May;77(1-3):37–56. doi: 10.1016/0303-7207(91)90057-y. [DOI] [PubMed] [Google Scholar]
  22. Scott R. H., Sutton K. G., Dolphin A. C. Interactions of polyamines with neuronal ion channels. Trends Neurosci. 1993 Apr;16(4):153–160. doi: 10.1016/0166-2236(93)90124-5. [DOI] [PubMed] [Google Scholar]
  23. Severs W. B., Gordon J. W., Beaven M. A., Jacobsen S. Some observations on aminoguanidine pharmacology. Pharmacology. 1970;3(4):201–208. doi: 10.1159/000136073. [DOI] [PubMed] [Google Scholar]
  24. Smith T. A. Spectrophotometric method for the estimation of arginine decarboxylase. Anal Biochem. 1979 Jan 15;92(2):331–337. doi: 10.1016/0003-2697(79)90666-3. [DOI] [PubMed] [Google Scholar]
  25. Southan G. J., Szabó C., Thiemermann C. Inhibition of the induction of nitric oxide synthase by spermine is modulated by aldehyde dehydrogenase. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1638–1644. doi: 10.1006/bbrc.1994.2374. [DOI] [PubMed] [Google Scholar]
  26. Sun M. K., Regunathan S., Reis D. J. Cardiovascular responses to agmatine, a clonidine-displacing substance, in anesthetized rat. Clin Exp Hypertens. 1995 Jan-Feb;17(1-2):115–128. doi: 10.3109/10641969509087059. [DOI] [PubMed] [Google Scholar]
  27. Thomson S. C., Gabbai F. B., Tucker B. J., Blantz R. C. Interaction between alpha 2-adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat. J Clin Invest. 1992 Aug;90(2):604–611. doi: 10.1172/JCI115899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thomson S. C., Tucker B. J., Gabbai F. B., Blantz R. C. Glomerular hemodynamics and alpha 2-adrenoreceptor stimulation: the role of renal nerves. Am J Physiol. 1990 Jan;258(1 Pt 2):F21–F27. doi: 10.1152/ajprenal.1990.258.1.F21. [DOI] [PubMed] [Google Scholar]
  29. Tucker B. J., Peterson O. W., Munger K. A., Bird J. E., Mitchell M., Pelayo J. C., Blantz R. C. Glomerular hemodynamic alterations during renal nerve stimulation in rats on high- and low-salt diets. Am J Physiol. 1990 Jan;258(1 Pt 2):F133–F143. doi: 10.1152/ajprenal.1990.258.1.F133. [DOI] [PubMed] [Google Scholar]
  30. Wu W. H., Morris D. R. Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J Biol Chem. 1973 Mar 10;248(5):1687–1695. [PubMed] [Google Scholar]
  31. Yagihashi S., Kamijo M., Baba M., Yagihashi N., Nagai K. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes. 1992 Jan;41(1):47–52. doi: 10.2337/diab.41.1.47. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES