Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):438–447. doi: 10.1172/JCI118433

Human endometrial matrix metalloproteinase-2, a putative menstrual proteinase. Hormonal regulation in cultured stromal cells and messenger RNA expression during the menstrual cycle.

J C Irwin 1, D Kirk 1, R B Gwatkin 1, M Navre 1, P Cannon 1, L C Giudice 1
PMCID: PMC507035  PMID: 8567965

Abstract

Proteinases are likely effectors of endometrial menstrual breakdown. We have investigated proteinase production by human endometrial stromal cells subjected in vitro to progesterone (P) withdrawal, the physiologic stimulus for menstruation. Culture media of cells exposed to estradiol, P, or estradiol plus P had low levels of proteolytic activity similar to cultures maintained in the absence of steroids. P withdrawal, or addition of RU486 to P-treated cultures, stimulated proteinase secretion. The stromal cell proteinase was characterized by gelatin zymography, inhibitor profile, and organomercurial activation, as a metalloproteinase present mostly as a 66-kD proenzyme with lower levels of a 62-kD active form. The P withdrawal-induced metalloproteinase was identified as matrix metalloproteinase-2 (MMP-2) by Western blotting. The increase of MMP-2 induced by P withdrawal was associated with the metalloproteinase-dependent breakdown of stromal cultures, involving dissolution of extracellular matrix and dissociation of stromal cells. Northern analysis showed the differential expression of MMP-2 mRNA in late secretory phase endometrium. These findings are consistent with the involvement of stromal cell-derived MMP-2 in the proteolysis of extracellular matrix promoting cyclic endometrial breakdown and the onset of menstrual bleeding.

Full Text

The Full Text of this article is available as a PDF (708.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkedal-Hansen H., Taylor R. E. Detergent-activation of latent collagenase and resolution of its component molecules. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1173–1178. doi: 10.1016/s0006-291x(82)80120-4. [DOI] [PubMed] [Google Scholar]
  2. Brenner C. A., Adler R. R., Rappolee D. A., Pedersen R. A., Werb Z. Genes for extracellular-matrix-degrading metalloproteinases and their inhibitor, TIMP, are expressed during early mammalian development. Genes Dev. 1989 Jun;3(6):848–859. doi: 10.1101/gad.3.6.848. [DOI] [PubMed] [Google Scholar]
  3. Brown P. D., Kleiner D. E., Unsworth E. J., Stetler-Stevenson W. G. Cellular activation of the 72 kDa type IV procollagenase/TIMP-2 complex. Kidney Int. 1993 Jan;43(1):163–170. doi: 10.1038/ki.1993.27. [DOI] [PubMed] [Google Scholar]
  4. Brown P. D., Levy A. T., Margulies I. M., Liotta L. A., Stetler-Stevenson W. G. Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res. 1990 Oct 1;50(19):6184–6191. [PubMed] [Google Scholar]
  5. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  6. Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C. S., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988 May 15;263(14):6579–6587. [PubMed] [Google Scholar]
  7. Cornillie F. J., Lauweryns J. M., Brosens I. A. Normal human endometrium. An ultrastructural survey. Gynecol Obstet Invest. 1985;20(3):113–129. doi: 10.1159/000298983. [DOI] [PubMed] [Google Scholar]
  8. Curry T. E., Jr, Dean D. D., Woessner J. F., Jr, LeMaire W. J. The extraction of a tissue collagenase associated with ovulation in the rat. Biol Reprod. 1985 Nov;33(4):981–991. doi: 10.1095/biolreprod33.4.981. [DOI] [PubMed] [Google Scholar]
  9. Emonard H. P., Remacle A. G., Noël A. C., Grimaud J. A., Stetler-Stevenson W. G., Foidart J. M. Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase. Cancer Res. 1992 Oct 15;52(20):5845–5848. [PubMed] [Google Scholar]
  10. Flowers C. E., Jr, Wilborn W. H. New observations on the physiology of menstruation. Obstet Gynecol. 1978 Jan;51(1):16–24. [PubMed] [Google Scholar]
  11. Fraser I. S. Mechanisms of endometrial bleeding. Reprod Fertil Dev. 1990;2(2):193–198. doi: 10.1071/rd9900193. [DOI] [PubMed] [Google Scholar]
  12. Giudice L. C., Dsupin B. A., Irwin J. C. Steroid and peptide regulation of insulin-like growth factor-binding proteins secreted by human endometrial stromal cells is dependent on stromal differentiation. J Clin Endocrinol Metab. 1992 Nov;75(5):1235–1241. doi: 10.1210/jcem.75.5.1385468. [DOI] [PubMed] [Google Scholar]
  13. Giudice L. C., Milkowski D. A., Lamson G., Rosenfeld R. G., Irwin J. C. Insulin-like growth factor binding proteins in human endometrium: steroid-dependent messenger ribonucleic acid expression and protein synthesis. J Clin Endocrinol Metab. 1991 Apr;72(4):779–787. doi: 10.1210/jcem-72-4-779. [DOI] [PubMed] [Google Scholar]
  14. Goldberg G. I., Marmer B. L., Grant G. A., Eisen A. Z., Wilhelm S., He C. S. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8207–8211. doi: 10.1073/pnas.86.21.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henzl M. R., Smith R. E., Boost G., Tyler E. T. Lysosomal concept of menstrual bleeding in humans. J Clin Endocrinol Metab. 1972 May;34(5):860–875. doi: 10.1210/jcem-34-5-860. [DOI] [PubMed] [Google Scholar]
  16. Herron G. S., Banda M. J., Clark E. J., Gavrilovic J., Werb Z. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem. 1986 Feb 25;261(6):2814–2818. [PubMed] [Google Scholar]
  17. Irwin J. C., Kirk D., King R. J., Quigley M. M., Gwatkin R. B. Hormonal regulation of human endometrial stromal cells in culture: an in vitro model for decidualization. Fertil Steril. 1989 Nov;52(5):761–768. doi: 10.1016/s0015-0282(16)61028-2. [DOI] [PubMed] [Google Scholar]
  18. Irwin J. C., Utian W. H., Eckert R. L. Sex steroids and growth factors differentially regulate the growth and differentiation of cultured human endometrial stromal cells. Endocrinology. 1991 Nov;129(5):2385–2392. doi: 10.1210/endo-129-5-2385. [DOI] [PubMed] [Google Scholar]
  19. Kirk D., Irwin J. C. Normal human endometrium in cell culture. Methods Cell Biol. 1980;21B:51–77. doi: 10.1016/s0091-679x(08)60678-0. [DOI] [PubMed] [Google Scholar]
  20. Kisalus L. L., Herr J. C., Little C. D. Immunolocalization of extracellular matrix proteins and collagen synthesis in first-trimester human decidua. Anat Rec. 1987 Aug;218(4):402–415. doi: 10.1002/ar.1092180408. [DOI] [PubMed] [Google Scholar]
  21. Koutský J., Rybák M., Jirásek J. E., Hladovec J. The content of plasminogen-activator in the endometrium, estimated by the fibrin-agar plate method. Gynaecologia. 1969;167(4):257–264. doi: 10.1159/000302209. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lechner J. F., Babcock M. S., Marnell M., Narayan K. S., Kaighn M. E. Normal human prostate epithelial cell cultures. Methods Cell Biol. 1980;21B:195–225. doi: 10.1016/s0091-679x(08)60684-6. [DOI] [PubMed] [Google Scholar]
  24. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  25. Marbaix E., Donnez J., Courtoy P. J., Eeckhout Y. Progesterone regulates the activity of collagenase and related gelatinases A and B in human endometrial explants. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11789–11793. doi: 10.1073/pnas.89.24.11789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  27. Monsky W. L., Kelly T., Lin C. Y., Yeh Y., Stetler-Stevenson W. G., Mueller S. C., Chen W. T. Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 1993 Jul 1;53(13):3159–3164. [PubMed] [Google Scholar]
  28. Okada Y., Morodomi T., Enghild J. J., Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. doi: 10.1111/j.1432-1033.1990.tb19462.x. [DOI] [PubMed] [Google Scholar]
  29. Overall C. M., Sodek J. Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases. J Biol Chem. 1990 Dec 5;265(34):21141–21151. [PubMed] [Google Scholar]
  30. Rawdanowicz T. J., Hampton A. L., Nagase H., Woolley D. E., Salamonsen L. A. Matrix metalloproteinase production by cultured human endometrial stromal cells: identification of interstitial collagenase, gelatinase-A, gelatinase-B, and stromelysin-1 and their differential regulation by interleukin-1 alpha and tumor necrosis factor-alpha. J Clin Endocrinol Metab. 1994 Aug;79(2):530–536. doi: 10.1210/jcem.79.2.8045973. [DOI] [PubMed] [Google Scholar]
  31. Rees M. C., Turnbull A. C. Menstrual disorders--an overview. Baillieres Clin Obstet Gynaecol. 1989 Jun;3(2):217–226. doi: 10.1016/s0950-3552(89)80019-7. [DOI] [PubMed] [Google Scholar]
  32. Reich R., Tsafriri A., Mechanic G. L. The involvement of collagenolysis in ovulation in the rat. Endocrinology. 1985 Feb;116(2):522–527. doi: 10.1210/endo-116-2-522. [DOI] [PubMed] [Google Scholar]
  33. Rodgers W. H., Matrisian L. M., Giudice L. C., Dsupin B., Cannon P., Svitek C., Gorstein F., Osteen K. G. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest. 1994 Sep;94(3):946–953. doi: 10.1172/JCI117461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodgers W. H., Osteen K. G., Matrisian L. M., Navre M., Giudice L. C., Gorstein F. Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during the reproductive cycle. Am J Obstet Gynecol. 1993 Jan;168(1 Pt 1):253–260. doi: 10.1016/s0002-9378(12)90922-9. [DOI] [PubMed] [Google Scholar]
  35. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  36. Sellers A., Woessner J. F., Jr The extraction of a neutral metalloproteinase from the involuting rat uterus, and its action on cartilage proteoglycan. Biochem J. 1980 Sep 1;189(3):521–531. doi: 10.1042/bj1890521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Singh E. J., Baccarini I., Zuspan F. P. Levels of prostaglandins F-2alpha and E-2 in human endometrium during the menstrual cycle. Am J Obstet Gynecol. 1975 Apr 1;121(7):1003–1006. doi: 10.1016/0002-9378(75)90927-8. [DOI] [PubMed] [Google Scholar]
  38. Stetler-Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989 Oct 15;264(29):17374–17378. [PubMed] [Google Scholar]
  39. Stetler-Stevenson W. G., Krutzsch H. C., Wacher M. P., Margulies I. M., Liotta L. A. The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation. J Biol Chem. 1989 Jan 25;264(3):1353–1356. [PubMed] [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vassalli J. D., Sappino A. P., Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991 Oct;88(4):1067–1072. doi: 10.1172/JCI115405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wewer U. M., Faber M., Liotta L. A., Albrechtsen R. Immunochemical and ultrastructural assessment of the nature of the pericellular basement membrane of human decidual cells. Lab Invest. 1985 Dec;53(6):624–633. [PubMed] [Google Scholar]
  43. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]
  44. Woessner J. F., Jr, Taplin C. J. Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J Biol Chem. 1988 Nov 15;263(32):16918–16925. [PubMed] [Google Scholar]
  45. Woessner J. F., Jr Total, latent and active collagenase during the course of post-partum involution of the rat uterus. Effect of oestradiol. Biochem J. 1979 Apr 15;180(1):95–102. doi: 10.1042/bj1800095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wood J. C., Williams E. A., Barley V. L., Cowdell R. H. The activity of hydrolytic enzymes in the human endometrium during the menstrual cycle. J Obstet Gynaecol Br Commonw. 1969 Aug;76(8):724–728. doi: 10.1111/j.1471-0528.1969.tb06166.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES